Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides

2018 ◽  
Vol 16 (1) ◽  
pp. 011301 ◽  
Author(s):  
Ziming Wang Ziming Wang ◽  
Kang Su Kang Su ◽  
Bo Feng Bo Feng ◽  
Tianhua Zhang Tianhua Zhang ◽  
Weiqing Huang Weiqing Huang ◽  
...  
2004 ◽  
Vol 12 (6) ◽  
pp. 1119 ◽  
Author(s):  
F. S. -S. Chien ◽  
Y.-J. Hsu ◽  
W.-F. Hsieh ◽  
S.-C. Cheng

PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


2012 ◽  
Vol 37 (15) ◽  
pp. 3108 ◽  
Author(s):  
Momchil Minkov ◽  
Vincenzo Savona

Sign in / Sign up

Export Citation Format

Share Document