microwave frequencies
Recently Published Documents


TOTAL DOCUMENTS

2160
(FIVE YEARS 197)

H-INDEX

86
(FIVE YEARS 7)

Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Alexander W. Powell ◽  
Michal Mrnka ◽  
Alastair P. Hibbins ◽  
J. Roy Sambles

Designing a subwavelength structure with multiple degenerate resonances at the same frequency can vastly enhance its interaction with electromagnetic radiation, as well as define its directivity. In this work we demonstrate that such mode superposition or ‘stacking’ can be readily achieved through the careful structuring of a high-permittivity spherical shell, with either a metallic or a low permittivity dielectric (air) core. We examine the behaviour of these structures both as scatterers of plane wave radiation and as directive antennas. In the case where the core is metallic this leads to a superposition of the magnetic and electric modes of the same order, causing suppression of backscattering and unidirectional antenna emission. For an air core, an electric mode can superimpose with the next-highest order magnetic mode, the backscattered power is maximized and antenna emission is bidirectional. This is shown experimentally at microwave frequencies by observing the backscattering of core-shell spheres and we propose two antenna designs demonstrating different emission patterns defined by the superposition of multiple modes.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8452
Author(s):  
Stylianos D. Assimonis ◽  
Sandhya Chandravanshi ◽  
Okan Yurduseven ◽  
Dmitry Zelenchuk ◽  
Oleksandr Malyuskin ◽  
...  

In this paper, we present the application of a resonant electric based metamaterial element and its two-dimensional metasurface implementation for a variety of emerging wireless applications. Metasurface apertures developed in this work are synthesized using sub-wavelength sampled resonant electric-based unit-cell structures and can achieve electromagnetic wave manipulation at microwave frequencies. The presented surfaces are implemented in a variety of forms, from absorption surfaces for energy harvesting and wireless power transfer to wave-chaotic surfaces for compressive sensing based single-pixel direction of arrival estimation and reflecting surfaces. It is shown that the resonant electric-synthesized metasurface concept offers a significant potential for these applications with high fidelity absorption, transmission and reflection characteristics within the microwave frequency spectrum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Luk`yanchuk ◽  
L. M. Vasilyak ◽  
V. Ya. Pecherkin ◽  
S. P. Vetchinin ◽  
V. E. Fortov ◽  
...  

AbstractResonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeonsoo Lim ◽  
Soo-Chan An ◽  
Hoon Yeub Jeong ◽  
Thi Hai-Yen Nguyen ◽  
Gangil Byun ◽  
...  

AbstractSpoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.


Author(s):  
Donevollon Sladden ◽  
Lourdes Farrugia ◽  
Roberta Scicluna ◽  
Julian Bonello ◽  
Charles Sammut

2021 ◽  
Vol 2062 (1) ◽  
pp. 012003
Author(s):  
V Gnanalakshmi ◽  
Rahul Raaj ◽  
V Suresh Kumar

Abstract To design a quad feed end-fire microstrip patch antenna for airborne systems. Basically these type of antennas are most helpful for avoiding mid-air collisions between aircraft. The microstrip patch antenna is very small in size and it is less in weight. Due to small size and less weight, it offers an easy design and fabrication process. The microstrip patch antenna has radiating patch on one side and ground on the other side. They operate at microwave frequencies. The low profile structure of microstrip antenna offers its wide use in wireless communication. They are used as communication antenna on missiles. Traffic alert and Collision Avoidance System (TCAS) is an airborne system which is utilized to provide the service as last defense equipment for avoiding mid-air collisions between the aircraft. 1.03 GHz and 1.09 GHz are the transmitting and receiving frequencies of the existing TCAS antenna respectively. In airborne systems, low aerodynamic drag is required. FR4 epoxy is chosen as the substrate material whose dielectric constant is 4.4. 1.06GHz is chosen as the design frequency, since it is centre frequency between 1.03GHz and 1.09GHz. Microstrip patch antenna always radiates in the broadside direction which is along elevation plane. Due to metallic cap, microstrip patch antenna can also radiate in the end fire radiation which is along the azimuth plane. The ground plane must have very large dimensions than the patch. This microstrip patch antenna working at UHF (Ultra High Frequency) band is designed and their parameters like gain, directivity, return loss, VSWR (Voltage Standing Wave Ratio) and radiation pattern have been analyzed and simulated using ANSYS HFSS (High Frequency Structure Stimulator).


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2278
Author(s):  
Dalibor L. Sekulic ◽  
Natasa M. Samardzic ◽  
Zivorad Mihajlovic ◽  
Miljko V. Sataric

In this paper, we performed analytical, numerical and experimental studies on the generation of soliton waves in discrete nonlinear transmission lines (NLTL) with varactors, as well as the analysis of the losses impact on the propagation of these waves. Using the reductive perturbation method, we derived a nonlinear Schrödinger (NLS) equation with a loss term and determined an analytical expression that completely describes the bright soliton profile. Our theoretical analysis predicts the carrier wave frequency threshold above which a formation of bright solitons can be observed. We also performed numerical simulations to confirm our analytical results and we analyzed the space–time evolution of the soliton waves. A good agreement between analytical and numerical findings was obtained. An experimental prototype of the lossy NLTL, built at the discrete level, was used to validate our proposed model. The experimental shape of the envelope solitons is well fitted by the theoretical waveforms, which take into account the amplitude damping due to the losses in commercially available varactors and inductors used in a prototype. Experimentally observed changes in soliton amplitude and half–maximum width during the propagation along lossy NLTL are in good accordance with the proposed model defined by NLS equation with loss term.


Sign in / Sign up

Export Citation Format

Share Document