Infrared target tracking with correlation filter based on adaptive fusion of responses

2019 ◽  
Vol 48 (6) ◽  
pp. 626003
Author(s):  
房胜男 Fang Shengnan ◽  
谷小婧 Gu Xiaojing ◽  
顾幸生 Gu Xingsheng
Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 241 ◽  
Author(s):  
Zhi Chen ◽  
Peizhong Liu ◽  
Yongzhao Du ◽  
Yanmin Luo ◽  
Wancheng Zhang

Correlation filter (CF) based tracking algorithms have shown excellent performance in comparison to most state-of-the-art algorithms on the object tracking benchmark (OTB). Nonetheless, most CF based tracking algorithms only consider limited single channel feature, and the tracking model always updated from frame-by-frame. It will generate some erroneous information when the target objects undergo sophisticated scenario changes, such as background clutter, occlusion, out-of-view, and so forth. Long-term accumulation of erroneous model updating will cause tracking drift. In order to address problems that are mentioned above, in this paper, we propose a robust multi-scale correlation filter tracking algorithm via self-adaptive fusion of multiple features. First, we fuse powerful multiple features including histogram of oriented gradients (HOG), color name (CN), and histogram of local intensities (HI) in the response layer. The weights assigned according to the proportion of response scores that are generated by each feature, which achieve self-adaptive fusion of multiple features for preferable feature representation. In the meantime the efficient model update strategy is proposed, which is performed by exploiting a pre-defined response threshold as discriminative condition for updating tracking model. In addition, we introduce an accurate multi-scale estimation method integrate with the model update strategy, which further improves the scale variation adaptability. Both qualitative and quantitative evaluations on challenging video sequences demonstrate that the proposed tracker performs superiorly against the state-of-the-art CF based methods.


2018 ◽  
Vol 8 (11) ◽  
pp. 2154 ◽  
Author(s):  
Xingmei Wang ◽  
Guoqiang Wang ◽  
Zhonghua Zhao ◽  
Yue Zhang ◽  
Binghua Duan

To obtain accurate underwater target tracking results, an improved kernelized correlation filter (IKCF) algorithm is proposed to track the target in forward-looking sonar image sequences. Specifically, a base sample with a dynamically continuous scale is first applied to solve the poor performance of fixed-scale filters. Then, in order to prevent the filter from drifting when the target disappears and appears again, an adaptive filter update strategy with the peak to sidelobe ratio (PSR) of the response diagram is developed to solve the following target tracking errors. Finally, the experimental results show that the proposed IKCF can obtain accurate tracking results for the underwater targets. Compared to other algorithms, the proposed IKCF has obvious superiority and effectiveness.


2019 ◽  
Vol 1213 ◽  
pp. 052077
Author(s):  
Saijun Zhou ◽  
Chengwang Zhang ◽  
Xuying Xiong ◽  
Ran He ◽  
Jingang Qiu

2019 ◽  
Vol 44 (11) ◽  
pp. 9363-9380 ◽  
Author(s):  
Haris Masood ◽  
Saad Rehman ◽  
Aimal Khan ◽  
Farhan Riaz ◽  
Ali Hassan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document