Design and Optimization of Two-Dimensional Photonic Crystal Four-Wavelength Wavelength Division Multiplexing

2011 ◽  
Vol 48 (12) ◽  
pp. 122302
Author(s):  
Wu Xiaoyang ◽  
Liang Pei ◽  
Dong Qianmin ◽  
Wang Le
2013 ◽  
Vol 760-762 ◽  
pp. 397-400
Author(s):  
Ying Hu ◽  
Gui Qiang Liu ◽  
Xiang Nan Zhang ◽  
Zheng Jie Cai

In this paper, a channel drop filter (CDF) is composed of two cubic lattice circular ring resonator cavities and point micro-cavities in a two-dimensional photonic crystal. The photonic band gap is calculated using the plane wave expansion (PWE) method and the optical characteristics of proposed structure are studying by the finite difference time domain (FDTD) method with perfectly matched layers (PMLs) acting as the boundary conditions . Two different wavelengths centered at 1773 nm and 1742 nm have been successful separation in this CDF. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
S. Naghizade ◽  
S. M. Sattari-Esfahlan

AbstractHere, we proposed a high performance 16-channel optical demultiplexer using two-dimensional photonic crystal ring resonator for telecommunication systems. By plane wave expansion (PWE) method the photonic band gap (PBG) of proposed structure calculated. Then, with finite difference time domain (FDTD) method the performance parameters of designed two-dimensional photonic crystal demultiplexer are analyzed. It is found that the channel wavelength of wavelength-division multiplexing (WDM) is truly tuned by changing the structure parameters of the demultiplexer and position of rod. Output peaks located in the optical communication C-band and L-band with the transmission efficiency of 99 %. The demultiplexer exhibits high-quality factor of 5176, and spectral width of 0.3. Very low crosstalk values are between −19 dB and −90 dB where, device only occupies an area of 1708.65 µm2. The proposed compact 16-channel demultiplexer can find more applications for the ultra-compact WDM systems in highly integrated telecommunication circuits.


Sign in / Sign up

Export Citation Format

Share Document