Effect of Powder Particle Size on Wear and Corrosion Resistance of S136 Mould Steels Fabricated by Selective Laser Melting

2018 ◽  
Vol 55 (10) ◽  
pp. 101403
Author(s):  
周燕 Zhou Yan ◽  
段隆臣 Duan Longchen ◽  
吴雪良 Wu Xueliang ◽  
文世峰 Wen Shifeng ◽  
魏青松 Wei Qingsong
2016 ◽  
Vol 43 (2) ◽  
pp. 0203007
Author(s):  
闫岸如 Yan Anru ◽  
杨恬恬 Yang Tiantian ◽  
王燕灵 Wang Yanling ◽  
马志红 Ma Zhihong ◽  
杜云 Du Yun ◽  
...  

2020 ◽  
Vol 989 ◽  
pp. 816-820
Author(s):  
Roman Sergeevich Khmyrov ◽  
R.R. Ableyeva ◽  
Tatiana Vasilievna Tarasova ◽  
A.V. Gusarov

Mass transfer in the laser-interaction zone at selective laser melting influences the quality of the obtained material. Powder particles displacement during the formation of the single bead is experimentally studied. The so-called denudated zone was visualized by metallography. It was determined that increasing the powder particle size leads to widening the denudated zone. This can signify that the adhesion forces between powder particles prevail over the friction forces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Godec ◽  
B. Podgornik ◽  
A. Kocijan ◽  
Č. Donik ◽  
D. A. Skobir Balantič

Abstract18Ni-300 maraging steel manufactured by selective laser melting was plasma nitrided to improve its wear and corrosion resistance. The effects of a prior solution treatment, aging and the combination of both on the microstructure and the properties after nitriding were investigated. The results were compared with conventionally produced 18Ni-300 counterparts subjected to the same heat- and thermo-chemical treatments. The plasma nitriding was performed under the same conditions (temperature of 520 °C and time of 6 h) as the aging in order to investigate whether the nitriding and the aging could be carried out simultaneously in a single step. The aim of this work was to provide a better understanding of the morphology and chemical composition of the nitrided layer in the additive-manufactured maraging steel as a function of the prior heat treatments and to compare the wear and corrosion resistance with those of conventional maraging steel. The results show that nitriding without any prior aging leads to cracks in the compound layer, while nitriding of the prior-heat-treated additive-manufactured maraging steel leads to benefits from the thermochemical treatment in terms of wear and corrosion resistance. Some explanations for the origins of the cracks and pores in the nitride layers are provided.


2020 ◽  
Author(s):  
Matjaž Godec ◽  
Bojan Podgornik ◽  
Aleksandra Kocijan ◽  
Črtomir Donik ◽  
Danijela Skobir Balantič

Abstract 18Ni-300 maraging steel manufactured by selective laser melting was plasma nitrided to improve its wear and corrosion resistance. The effects of a prior solution treatment, aging and the combination of both on the microstructure and the properties after nitriding were investigated. The results were compared with conventionally produced 18Ni-300 counterparts subjected to the same heat- and thermo-chemical treatments. The plasma nitriding was performed under the same conditions (temperature of 520 °C and time of 6 hours) as the aging in order to investigate whether the nitriding and the aging could be carried out simultaneously in a single step. The aim of this work was to provide a better understanding of the morphology and chemical composition of the nitrided layer in the additive-manufactured maraging steel as a function of the prior heat treatments and to compare the wear and corrosion resistance with those of conventional maraging steel. The results show that nitriding without any prior aging leads to cracks in the compound layer, while nitriding of the prior-heat-treated additive-manufactured maraging steel leads to benefits from the thermochemical treatment in terms of wear and corrosion resistance. Some explanations for the origins of the cracks and pores in the nitride layers are provided.


Alloy Digest ◽  
1961 ◽  
Vol 10 (7) ◽  

Abstract TANTUNG G is a cast nonferrous alloy containing tantalum or columbium carbide and having wear and corrosion resistance. It is used primarily for cutting tools. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-28. Producer or source: Vascoloy, Ramet Division.


Alloy Digest ◽  
2000 ◽  
Vol 49 (8) ◽  

Abstract Allegheny Ludlum Type 420 is a hardenable, straight-chromium stainless steel with wear and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-801. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Nirosta 4031 (Type 420) is a martensitic grade of stainless steel that is heat treatable and has wear and corrosion resistance. It is predominately used in the quenched-and-tempered condition. Typical applications are blades and shears for all types of cutting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-925. Producer or source: ThyssenKrupp Nirosta GmbH.


Sign in / Sign up

Export Citation Format

Share Document