thermochemical treatment
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 128)

H-INDEX

22
(FIVE YEARS 5)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 465
Author(s):  
Gabriele Di Giacomo ◽  
Pietro Romano

The production of olive oil involves the sustainable management of the waste produced along the entire production chain. This review examines the developments regarding cultivation techniques, production technologies, and waste management, highlighting the goals to be achieved and the most reasonable prospects. The results show that cultivation and production technology have evolved to an almost final solution to meet economic feasibility, keeping the oil’s high quality. Continuous horizontal decanters will coexist with traditional mills in many countries with old olive oil production and consumption traditions. High-quality products have conquered markets, especially in the wealthiest countries. At the same time, the exploitation of dried pomace by solvent extraction is increasingly an obsolete practice. However, waste management is still looking for one or a few reasonable solutions that meet modern society’s constraints. The enhancement of some experienced technologies and the full-scale application of emerging technologies and strategies should solve this problem in the short–medium term. A short discussion is reported on the possibility of unifying the nature and the quality of the waste, whatever the olive oil production method is. Furthermore, modern thermochemical treatment for solid wet organic waste disposal is examined and discussed.


Author(s):  
Lena Johansson Westholm

Wastewater must be treated no matter if is reused or discharged into the environment. The cost of wastewater treatment may be rather high, though other solutions are sought. One of them is the application of filter materials. The filter materials have been used for removal of various pollutants in different kinds of wastewater and a wide range of filter materials (natural products, industrial waste products or man-made products) have been investigated. Among these filter materials, biochar has attracted increasing attention during the last decade. A large number of publications are devoted to production, properties and potential applications of biochar. They reveal that biochar is capable of removing pollutants of different kinds from wastewaters. A number of experiments was focused on the removal of commonly found pollutants, e.g. nutrients, heavy metals, organic matters and pharmaceuticals. It was found that the origin of the feedstock and the thermochemical treatment method are tightly connected and will have an impact on the properties of the biochar. A large number of different feedstock material like wood or wood residues, garden wastes or human and animal wastes can be transformed into biochar by torrefaction and pyrolysis. Properties of biochar will depend on transformation method. Surface area, porosity, pH, surface charge, functional groups and mineral components contribute to a vast number of mechanisms that are responsible for the metal removal, e.g. electrostatic interaction between the surface of the biochar and the specific metal, the cation exchange capacity between metals and protons and the alkaline metals on the surface of the biochar, metal complexation with functional groups and precipitation of metals that form non-soluble compounds. Biochar was successfully applied in wetlands systems to increase the removal of some targeted pollutants.


2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Amjed Hassan ◽  
Mohamed Mahmoud ◽  
Abdualilah Al-Baiz ◽  
Wajdi Buhaezah

Abstract Condensate banking represent a persistent challenge during gas production from tight reservoir. The accumulation of condensate around the wellbore can rapidly diminish gas production. When reservoir pressure drop below dew point, condensate start to dropout from gas phase, filling pores and permeable fractures, and block gas production. There are several strategies to mitigate condensate banking, however, these strategies are either demonstrate limited results or are economically not viable. In this study, a novel method to mitigate condensate was developed using thermochemical reactants. Slow-release of thermochemical reactants inside different core samples was studied. The effect of in-situ generation of gas on the petrophysical properties of the rock was reported. Thermochemical treatment was applied to recover condensate on sandstone and carbonate, where the reported recoveries were around 70%. However, when shale sample was used, the recovery was only 43%. Advanced Equation-of-State (EoS) compositional and unconventional simulator (GEM) from CMG (Computer Modelling Group) software was used to simulate thermochemical treatment and gas injection. The simulation study showed that thermochemical stimulation had increased production period from 3.5 to 22.7 months, compared to gas injection.


2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Hussain Al-Jeshi ◽  
Olalekan Alade ◽  
Mohamed Mahmoud ◽  
Wajdi Buhaezah

Abstract One of the typical production challenges is occurrence of impermeable layers of highly viscous asphaltenic oil (known as tarmat) at oil/water contact within a reservoir. Tar forms a physical barrier that isolates producing zones from aquifer or water injectors. As a result of tar occurrence, is a rapid pressure decrease that can be observed in such reservoirs, increasing number of dead wells, and declining productivity. Another indirect consequence of Tar presence is poor sweep efficiency that leads to water cut increase by a drastic magnitude. An innovative approach was developed to establish better sweep efficiency, transmissibility and pressure maintenance of Tar impacted-areas using thermochemical treatment. The treatment consists of injecting exothermic reaction-components that react downhole and generate in-situ pressure and heat. The in-situ reaction products provide heat and gas-drive energy to mobilize tar, improve sweep efficiency and maintain flooding for better pressure maintenance. Typically, downhole heat generation through chemical reaction releases substantial heat which could be employed in various thermal stimulation operations. Nano/ionic liquids, high pH solutions, solvents and nano metals were combined with the exothermic reaction to improve tar mobilization. Based on lab testing, the new technology showed more recovery than conventional steam flooding. Permeable channels were created in a tar layer with sandback samples, which enhanced transmissibility, pressure support and sweep efficiency. The effect of thermochemical treatment and ionic liquid on bitumen texture will be described. Impact of In-situ generated heat on injectivity will also be presented. The novel method will enable commercial production from tar-impacted reservoirs, and avoid costly steam flooding systems. The developed novel treatment relates to in-situ steam generation to maximize heat delivery efficiency of steam into the reservoir and to minimize heat losses due to under and/or over burdens. The generated in-situ steam and gas can be applied to recover deep oil reservoirs, which cannot be recovered with traditional steam, miscible gas, nor polymer injection methods.


2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
Alfredo Márquez-Herrera ◽  
Joel Moreno-Palmerin

The ASTM A-36 steel is the main alloy, used in the metal-mechanical industry. In the present study, the effect of boron-carbon coating on the hardness and corrosion resistance of the steel ASTM A-36 was reported. Boronizing thermochemical treatment was carried out at 950 °C for 4 h followed by the carburizing process at 930 °C for 6 h. The corrosion study was conducted using the polarization technique (Tafel) and electrochemical impedance spectroscopy (EIS), which employed a fused deposition modeling-based 3D printing electrochemical cell made of polylactic acid (PLA). A commercial platinum foil and an Ag/AgCl (3.5 M KCl) electrode were used as the counter and reference electrode, respectively. The working electrode used an area of 1 cm2 of the sample. Optical microscopic analysis shown that borides formed on the surface of steels has a saw-tooth morphology and a uniform coating with a thickness of about 60 µm in both samples. The carburizing over boride promoted the formation of coatings on the outermost layer of the samples with a thickness of about 17 µm over the boride layer. Boride formation was verified by X-ray diffraction (XRD) analysis indicating only the formation of the Fe2B phase. Results showed that boride samples exhibited inferior corrosion resistance compared to original samples, but after carburizing, an outer layer was formed, with the hardness and corrosion resistance like that of the original sample.


2021 ◽  
Author(s):  
Amjed Mohammed Hassan ◽  
Mohamed Ahmed Mahmoud ◽  
Ayman Raja Al-Nakhli

Abstract In gas reservoirs, the well production can be reduced due to the development and accumulation of condensate in the near-wellbore zone. Various techniques are used to minimize the condensate damage and maintain hydrocarbon production. Hydraulic fracturing and wettability alteration techniques are the most effective methods. However, these techniques are expensive, especially in deep gas reservoirs. This paper introduces a new approach for mitigating condensate accumulation by integrating the hydraulic fracturing and wettability alteration treatments. The efficiency of two chemicals that can generate multiple fractures and alter the fracture surfaces to less condensate status is investigated in this work. Thermochemical fluids and chelating agent solutions are used to mitigate the condensate damage and improve gas production for the long term. Several laboratory measurements were carried out to study the performance of the proposed approach; coreflooding, zeta potential, and nuclear magnetic resonance (NMR) experiments were conducted. The chemicals were injected into the tight rocks to recover the condensate and improve the flow conductivity. Zeta potential was performed to assess the rock wettability before and after the chemical injection. Moreover, the changes in pores network due to the chemical treatments as analyzed using the NMR technique. Thermochemical treatment removed around 66% of the condensate liquid, while the chelating agent reduced the condensate saturation by around 80%. The main mechanism for condensate removal during thermochemical flooding is the generation of micro-fractures that increase the rock permeability and improve the condensate flow. On the other hand, chelating agents can alter the rock wettability toward less oil-state, leading to considerable recovery of the condensate liquid utilizing a wettability alteration mechanism. Finally, an integrated approach is suggested to injecting thermochemical fluids followed by chelating agent solutions. The proposed technique can lead to generating micro-fractures of less oil-wet surfaces, consequently, the condensate bank can be removed by more than 90%.


Author(s):  
J. de O. Vitoriano ◽  
R.S. Pessoa ◽  
A. de A. Mendes Filho ◽  
J. Amorim Filho ◽  
C. Alves-Junior

2021 ◽  
Vol 27 (4) ◽  
pp. 257-264
Author(s):  
Ružica R. Nikolić ◽  
Svetislav Marković ◽  
Dušan Arsić ◽  
Vukić Lazić ◽  
Branislav Hadzima ◽  
...  

Abstract During the process of regeneration of machine parts, certain phenomena occur that have a significant impact on the loss of their working ability. Hereditary properties are expressed by the interdependence of geometric and physical-mechanical-metallurgical parameters of gear teeth created during the technological operations of regeneration of worn teeth by hard-facing. The influence of the type of additional material (electrodes and their combinations) on the tribological characteristics of welded gear teeth was considered, whereby the so-called hard additional materials were applied. Those are the additional materials that give the required surface hardness of the teeth without subsequent thermal or thermochemical treatment. This research did not involve the regeneration of specific worn gears removed from machine systems, but the new gears were made, which were then damaged and then regenerated by hard-facing using the shielded metal arc welding (SMAW) procedure. Thus, all the tested gears were made of the same material, belonged to one batch and were machined on the same machines with the same machining regimes. The tests were performed on samples made of 20MnCr5 steel for cementation, on a tribometer by the “block on disc” method, which was designed to simulate the operating conditions of coupled teeth of concrete gears in the exploitation conditions. Based on the conducted tribological tests, the average coefficients of friction and topography of the surfaces were determined by measuring the wear trace and it was defined which additional materials give the best tribological characteristics of the surfaces of gears regenerated by hard-facing.


Sign in / Sign up

Export Citation Format

Share Document