scholarly journals Maintenance of a Drosophila melanogaster Population Cage

Author(s):  
Juan Manuel Caravaca ◽  
Elissa P. Lei
1975 ◽  
Vol 25 (2) ◽  
pp. 197-200 ◽  
Author(s):  
J. A. Sved

SUMMARYA population cage experiment has been carried out to estimate fitness for a sample of fourteen non-lethal third chromosomes in D. melanogaster. This measurement, which should take into account all aspects of fitness, gives an estimated mean fitness of chromosome homozygotes of approximately ten percent.


1976 ◽  
Vol 108 (12) ◽  
pp. 1409-1415 ◽  
Author(s):  
J. A. Keith Reid ◽  
C. F. Wehrhahn

AbstractRecent advances in genetic insect control theory have made it important to investigate the fitness effects of, and isolation procedures for, autosomal translocations. We isolated 57 autosomal translocations in Drosophila melanogaster (Dipt., Dros.). Twenty-one were homozygous-viable and a few of these were almost as viable as wild-types. From data obtained during the isolation of these translocations it appears that those translocations whose heterozygotes produce high levels of unbalanced gametes have the same range of homozygous viabilities as others. We may infer, therefore, that it is possible to use our simple marker-free isolation method to isolate translocations with sufficiently low heterozygote and sufficiently high homozygote fitness to make population replacement practicable.This is confirmed in population cage competition experiments. It appears that between 5 and 10% of induced marker-free translocations may be useful for population replacement.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 509-511 ◽  
Author(s):  
B D Latter ◽  
J A Sved

Abstract We have analyzed the results from a range of procedures designed to measure the fitness under competitive conditions of inbred strains of Drosophila melanogaster, specifically strains which are homozygous for chromosome 2. All methods show a substantial reduction in fitness, ranging from an estimated 70-80% for single generation competition tests to 80-90% for a multiple generation population cage procedure. Furthermore, inbreeding through brother-sister mating reduces fitness by a comparable amount when allowance is made for the expected degree of homozygosity.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 743-755
Author(s):  
D Anxolabehere

ABSTRACT Sexual selection is measured between two strains of Drosophila melanogaster: a wild strain and a strain mutant at the sepia locus. Frequencydependent male mating was found to be successful, whereas the female genotype exerted no influence. The rarer the male genotype becomes, the greater is its mating success. A selection model is built for this behavior characteristic in which selection operates differently in the two sexes. The genetic consequencies of this model upon the maintenance of genetic polymorphism at the sepia locus are compared to experimental data from previous population cage studies. The fit obtained with this sexual selection model is compared to that of the larval selection model previously investigated. A model composed of both sexual and larval components of fitness is presented. The role that each major selection component is expected to play in experimental populations as the gene frequency changes is discussed. Sexual selection leads to an equilibrium level higher than larval selection, and the combined model is very close to the experimental values.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Courtney M Schroeder ◽  
Sarah A Tomlin ◽  
Isabel Mejia Natividad ◽  
John R Valenzuela ◽  
Janet M Young ◽  
...  

Most actin-related proteins (Arps) are highly conserved and carry out well-defined cellular functions in eukaryotes. However, many lineages like Drosophila and mammals encode divergent non-canonical Arps whose roles remain unknown. To elucidate the function of non-canonical Arps, we focus on Arp53D, which is highly expressed in testes and retained throughout Drosophila evolution. We show that Arp53D localizes to fusomes and actin cones, two germline-specific actin structures critical for sperm maturation, via a unique N-terminal tail. Surprisingly, we find that male fertility is not impaired upon Arp53D loss, yet population cage experiments reveal that Arp53D is required for optimal fitness in Drosophila melanogaster. To reconcile these findings, we focus on Arp53D function in ovaries and embryos where it is only weakly expressed. We find that under heat stress Arp53D-knockout (KO) females lay embryos with reduced nuclear integrity and lower viability; these defects are further exacerbated in Arp53D-KO embryos. Thus, despite its relatively recent evolution and primarily testis-specific expression, non-canonical Arp53D is required for optimal embryonic development in Drosophila.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document