testis specific expression
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katerina Soupsana ◽  
Eleftheria Karanika ◽  
Fani Kiosse ◽  
Anastasia Christogianni ◽  
Yiorgos Sfikas ◽  
...  

AbstractThe kinase haspin phosphorylates histone H3 at threonine-3 (H3T3ph) during mitosis. H3T3ph provides a docking site for the Chromosomal Passenger Complex at the centromere, enabling correction of erratic microtubule-chromosome contacts. Although this mechanism is operational in all dividing cells, haspin-null mice do not exhibit developmental anomalies, apart from aberrant testis architecture. Investigating this problem, we show here that mouse embryonic stem cells that lack or overexpress haspin, albeit prone to chromosome misalignment during metaphase, can still divide, expand and differentiate. RNA sequencing reveals that haspin dosage affects severely the expression levels of several genes that are involved in male gametogenesis. Consistent with a role in testis-specific expression, H3T3ph is detected not only in mitotic spermatogonia and meiotic spermatocytes, but also in non-dividing cells, such as haploid spermatids. Similarly to somatic cells, the mark is erased in the end of meiotic divisions, but re-installed during spermatid maturation, subsequent to methylation of histone H3 at lysine-4 (H3K4me3) and arginine-8 (H3R8me2). These serial modifications are particularly enriched in chromatin domains containing histone H3 trimethylated at lysine-27 (H3K27me3), but devoid of histone H3 trimethylated at lysine-9 (H3K9me3). The unique spatio-temporal pattern of histone H3 modifications implicates haspin in the epigenetic control of spermiogenesis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Courtney M Schroeder ◽  
Sarah A Tomlin ◽  
Isabel Mejia Natividad ◽  
John R Valenzuela ◽  
Janet M Young ◽  
...  

Most actin-related proteins (Arps) are highly conserved and carry out well-defined cellular functions in eukaryotes. However, many lineages like Drosophila and mammals encode divergent non-canonical Arps whose roles remain unknown. To elucidate the function of non-canonical Arps, we focus on Arp53D, which is highly expressed in testes and retained throughout Drosophila evolution. We show that Arp53D localizes to fusomes and actin cones, two germline-specific actin structures critical for sperm maturation, via a unique N-terminal tail. Surprisingly, we find that male fertility is not impaired upon Arp53D loss, yet population cage experiments reveal that Arp53D is required for optimal fitness in Drosophila melanogaster. To reconcile these findings, we focus on Arp53D function in ovaries and embryos where it is only weakly expressed. We find that under heat stress Arp53D-knockout (KO) females lay embryos with reduced nuclear integrity and lower viability; these defects are further exacerbated in Arp53D-KO embryos. Thus, despite its relatively recent evolution and primarily testis-specific expression, non-canonical Arp53D is required for optimal embryonic development in Drosophila.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changping Yu ◽  
Runjie Diao ◽  
Ranjha Khan ◽  
Cheng Deng ◽  
Hui Ma ◽  
...  

X-derived retrogenes contribute to genetic diversity in evolution and are usually specifically expressed in testis and perform important functions during spermatogenesis. Ubl4b is an autosomal retrogene with testis-specific expression derived from Ubl4a, an X-linked housekeeping gene. In the current study, we performed phylogenetic analysis and revealed that Ubl4a and Ubl4b are subject to purifying selection and may have conserved functions in evolution. Ubl4b was knocked out in mice using CRISPR/Cas9 genome editing technology and interestingly, we found no alterations in reproductive parameters of Ubl4b–/– male mice. To get insights into whether Ubl4a could compensate the absence of Ubl4b in vivo, we further obtained Ubl4a–/Y; Ubl4b–/– mice that lack both Ubl4a and Ubl4b, and the double knockout (dKO) mice also displayed normal spermatogenesis, showing that Ubl4a and Ubl4b are both dispensable for spermatogenesis. Thus, through the in vivo study of UBL4A and UBL4B, we provided a direct evidence for the first time that some X chromosome-derived autosomal retrogenes can be unfunctional in spermatogenesis, which represents an additional evolutionary type of X-derived retrogenes.


2020 ◽  
Vol 20 (4) ◽  
pp. 589-594
Author(s):  
Seonhee Lee ◽  
Seong Hyeon Hong ◽  
Chunghee Cho

2019 ◽  
Vol 59 (4) ◽  
pp. 864-874 ◽  
Author(s):  
Justin C Havird ◽  
Hunter J McConie

Abstract Mitochondrial function is critical in eukaryotes. To maintain an adequate supply of energy, precise interactions must be maintained between nuclear- and mitochondrial-encoded gene products. Such interactions are paramount in chimeric enzymes such as the oxidative phosphorylation (OXPHOS) complexes. Mutualistic coevolution between the two genomes has therefore been suggested to be a critical, ubiquitous feature of eukaryotes that acts to maintain cellular function. However, mitochondrial genomes can also act selfishly and increase their own transmission at the expense of organismal function. For example, male-harming mutations are predisposed to accumulate in mitochondrial genomes due to their maternal inheritance (“mother’s curse”). Here, we investigate sexually antagonistic mitonuclear coevolution in nuclear-encoded OXPHOS paralogs from mammals and Drosophila. These duplicate genes are highly divergent but must interact with the same set of mitochondrial-encoded genes. Many such paralogs show testis-specific expression, prompting previous hypotheses suggesting they may have evolved under selection to counteract male-harming mitochondrial mutations. We found increased rates of evolution in OXPHOS paralogs with testis-specific expression in mammals and Drosophila, supporting this hypothesis. However, further analyses suggested such patterns may be due to relaxed, not positive selection, especially in Drosophila. Structural data also suggest that mitonuclear interactions do not play a major role in the evolution of many OXPHOS paralogs in a consistent way. In conclusion, no single OXPHOS paralog met all our criteria for being under selection to counteract male-harming mitochondrial mutations. We discuss alternative explanations for the drastic patterns of evolution in these genes, including mutualistic mitonuclear coevolution, adaptive subfunctionalization after gene duplication, and relaxed selection on OXPHOS in male tissues.


2017 ◽  
Vol 19 (6) ◽  
pp. 659 ◽  
Author(s):  
Chunghee Cho ◽  
Juri Jeong ◽  
Sora Jin ◽  
Heejin Choi ◽  
JunTae Kwon ◽  
...  

2015 ◽  
Vol 112 (40) ◽  
pp. 12450-12455 ◽  
Author(s):  
Antonio Bernardo Carvalho ◽  
Beatriz Vicoso ◽  
Claudia A. M. Russo ◽  
Bonnielin Swenor ◽  
Andrew G. Clark

Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.


Sign in / Sign up

Export Citation Format

Share Document