insect control
Recently Published Documents


TOTAL DOCUMENTS

979
(FIVE YEARS 42)

H-INDEX

41
(FIVE YEARS 2)

2022 ◽  
Vol 215 ◽  
pp. 21-31
Author(s):  
Sofia Faliagka ◽  
Nikolaos Katsoulas
Keyword(s):  

Author(s):  
Hassan A. Gad ◽  
Gomaa R. M. Ramadan ◽  
Ahmed M. El-Bakry ◽  
Ahmed M. El-Sabrout ◽  
Samir A. M. Abdelgaleil

Author(s):  
Nusrat Iqbal ◽  
Dipak Kumar Hazra ◽  
Aloke Purkait ◽  
Amrish Agrawal ◽  
Jitendra Kumar

Nematology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Aunchalee Thanwisai ◽  
Paramaporn Muangpat ◽  
Abdulhakam Dumidae ◽  
Chanakan Subkrasae ◽  
Jiranun Ardpairin ◽  
...  

Summary Entomopathogenic nematodes (EPN) Steinernema and Heterorhabditis with symbionts with Xenorhabdus and Photorhabdus bacteria, respectively, are reported as biocontrol agents for insect control. The objectives of this study were to identify EPN and their symbiotic bacteria in national parks of Phitsanulok Province, Thailand, and to test how Xenorhabdus isolates attack Aedes aegypti larvae. We collected 810 soil samples from four national parks. The juvenile stage of EPN was isolated from soil samples using a baiting technique with Galleria mellonella followed by a White trap. Partial regions of 28S rDNA and internal transcript spacer were sequenced to identify EPN, and recA sequencing was used to discriminate between Xenorhabdus and Photorhabdus. We found that 74 of the 810 soil samples (9.1%) were positive for the EPN. The EPN were molecularly identified as S. surkhetense, S. longicaudum, H. indica and Heterorhabditis sp. SGmg3, and their symbiotic bacteria were identified as X. stockiae, X. griffiniae, X. indica, X. vietnamensis, P. luminescens subsp. akhurstii, and P. temperata subsp. temperata. Xenorhabdus griffiniae showed potential larvicidal activity against A. aegypti (91% mortality at 72 and 96 h after exposure). This study demonstrates the diversity of EPN and symbiotic bacteria in national parks of Thailand and the potential to use X. griffiniae as a biocontrol agent to kill A. aegypti larvae.


2021 ◽  
Author(s):  
Simerjeet Virk ◽  
Eric Prostko ◽  
Robert Kemerait ◽  
Mark Abney ◽  
Glen Rains ◽  
...  

Growers have rapidly adopted auxin-resistant cotton and soybean technologies. In Georgia, growers who plant auxin-resistant cotton/soybean are required to utilize nozzles that produce larger (coarser) droplets when spraying auxin herbicides to minimize potential off-target movement of pesticides. Consequently, these nozzles are also used in peanut (an important rotational crop with cotton) since changing nozzles between crops is uncommon for growers. However, larger droplets can result in reduced spray coverage which may lead to less effective pest control. Therefore, seven on-farm trials were conducted in commercial peanut fields using commercial sprayers from 2018 to 2020 across four different locations in Georgia to compare the spray performance of air-induction (AI) nozzles that produce very coarse to ultra coarse droplets (VMD50 ≥ 404 microns) with non-AI (conventional flat fan) nozzles that produce medium to coarse droplets (403≥VMD50≥236 microns) for pest management in peanuts. For each trial, test treatments were implemented in large replicated strips where each strip represented a nozzle type. For nozzle comparison, XR and XRC represented non-AI nozzles while TADF, TDXL, TTI, and TTI60 represented the commonly used AI nozzles in these trials. Spray deposition data for each nozzle along with disease ratings, weed and insect control ratings were collected in all on-farm trials. Peanut yield was collected at harvest. Results indicated that the AI nozzles produced larger droplets than the non-AI nozzles in all nozzle tests; however, the spray coverage varied among the nozzle types. Nozzle type did not influence pest (weed, disease and insect) control, or peanut yield (p≤0.10) in any of the on-farm trials. These results suggested that peanut growers can utilize these coarser droplet nozzles for pest management in fields with low to average pest pressure during the season. Future research on nozzle evaluation needs to investigate the influence of droplet size, carrier volume, and pressure on coverage and canopy penetration.


2021 ◽  
Vol 7 (8) ◽  
pp. 668
Author(s):  
Ayodeji Amobonye ◽  
Prashant Bhagwat ◽  
Suren Singh ◽  
Santhosh Pillai

Beauveria bassiana is an entomopathogenic fungus widely used as a biopesticide for insect control; it has also been shown to exist as an endophyte, promoting plant growth in many instances. This study highlights an alternative potential of the fungus; in the production of an industrially important biocatalyst, xylanase. In this regard, Beauveria bassiana SAN01 xylanase was purified to homogeneity and subsequently characterized. The purified xylanase was found to have a specific activity of 324.2 Umg−1 and an estimated molecular mass of ~37 kDa. In addition, it demonstrated optimal activity at pH 6.0 and 45 °C while obeying Michaelis–Menton kinetics towards beechwood xylan with apparent Km, Vmax and kcat of 1.98 mgmL−1, 6.65 μM min−1 and 0.62 s−1 respectively. The enzyme activity was strongly inhibited by Ag2+ and Fe3+ while it was significantly enhanced by Co2+ and Mg2+. Furthermore, the xylanase was shown to effectively deink wastepaper at an optimal rate of 106.72% through its enzymatic disassociation of the fiber-ink bonds as demonstrated by scanning electron microscopy and infrared spectroscopy. This is the first study to demonstrate the biotechnological application of a homogeneously purified glycosyl hydrolase from B. bassiana.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 191-193
Author(s):  
S. K. Tyagi ◽  
A. R. Khire ◽  
G. S. Kulmi

A field experiment was conducted to assess the performance of IPM module against major sucking pests of pomegranate on seven farmers’ field in the adopted village of Krishi Vigyan Kendra, Khargone (M.P.) during 2018-19 and 2019-20. IPM module comprised Neem oil 1500 ppm @ 3 ml/lit at first flush of leaf+ Need based spray of Imidacloprid 17.8% SL @ 0.25 ml/lit and Thiamethoxam 25% WG @ 0.20 g/liton the rotation of 15 days’. Minimum population of aphids and thrips were recorded in IPM fields and maximum population of the aphids and thrips were recorded in non-IPM fields. Per cent insect control over non-IPM was 50.35% for aphids, and 47.72% for thrips, respectively. Fruit yield for IPM was 156.36 q/ha for both seasons as against 128.43 q/ha in non-IPM. Hence, it may be inferred that IPM module was able to enhance the yield with cost-effective production as against non-IPM.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fernan Santiago Mejía-Alvarado ◽  
Thaura Ghneim-Herrera ◽  
Carmenza E. Góngora ◽  
Pablo Benavides ◽  
Lucio Navarro-Escalante

The coffee berry borer (CBB); Hypothenemus hampei (Coleoptera: Curculionidae), is widely recognized as the major insect pest of coffee crops. Like many other arthropods, CBB harbors numerous bacteria species that may have important physiological roles in host nutrition, detoxification, immunity and protection. To date, the structure and dynamics of the gut-associated bacterial community across the CBB life cycle is not yet well understood. A better understanding of the complex relationship between CBB and its bacterial companions may provide new opportunities for insect control. In the current investigation, we analyzed the diversity and abundance of gut microbiota across the CBB developmental stages under field conditions by using high-throughput Illumina sequencing of the 16S ribosomal RNA gene. Overall, 15 bacterial phyla, 38 classes, 61 orders, 101 families and 177 genera were identified across all life stages, including egg, larva 1, larva 2, pupa, and adults (female and male). Proteobacteria and Firmicutes phyla dominated the microbiota along the entire insect life cycle. Among the 177 genera, the 10 most abundant were members of Ochrobactrum (15.1%), Pantoea (6.6%), Erwinia (5.7%), Lactobacillus (4.3%), Acinetobacter (3.4%), Stenotrophomonas (3.1%), Akkermansia (3.0%), Agrobacterium (2.9%), Curtobacterium (2.7%), and Clostridium (2.7%). We found that the overall bacterial composition is diverse, variable within each life stage and appears to vary across development. About 20% of the identified OTUs were shared across all life stages, from which 28 OTUs were consistently found in all life stage replicates. Among these OTUs there are members of genera Pantoea, Erwinia, Agrobacterium, Ochrobactrum, Pseudomonas, Acinetobacter, Brachybacterium, Sphingomonas and Methylobacterium, which can be considered as the gut-associated core microbiota of H. hampei. Our findings bring additional data to enrich the understanding of gut microbiota in CBB and its possible use for development of insect control strategies.


Sign in / Sign up

Export Citation Format

Share Document