scholarly journals THE INFLUENCE OF SEXUAL AND LARVAL SELECTION ON THE MAINTENANCE OF POLYMORPHISM AT THE SEPIA LOCUS IN DROSOPHILA MELANOGASTER

Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 743-755
Author(s):  
D Anxolabehere

ABSTRACT Sexual selection is measured between two strains of Drosophila melanogaster: a wild strain and a strain mutant at the sepia locus. Frequencydependent male mating was found to be successful, whereas the female genotype exerted no influence. The rarer the male genotype becomes, the greater is its mating success. A selection model is built for this behavior characteristic in which selection operates differently in the two sexes. The genetic consequencies of this model upon the maintenance of genetic polymorphism at the sepia locus are compared to experimental data from previous population cage studies. The fit obtained with this sexual selection model is compared to that of the larval selection model previously investigated. A model composed of both sexual and larval components of fitness is presented. The role that each major selection component is expected to play in experimental populations as the gene frequency changes is discussed. Sexual selection leads to an equilibrium level higher than larval selection, and the combined model is very close to the experimental values.

Genetics ◽  
1984 ◽  
Vol 106 (4) ◽  
pp. 601-612
Author(s):  
Paul M Sharp

ABSTRACT The effect of full-sib inbreeding on competitive male-mating ability (CI♂) in Drosophila melanogaster was investigated in two experiments. In the first, five inbred lines (with reserves) were assessed up to 18 generations. Linear inbreeding depression, of 5.9% per 10% increase in homozygosity, was observed. In a second experiment, 21 inbred lines were tested after three generations of full-sib mating (without reserves), and the decline with inbreeding was more severe, the male competitive index (CI♂) decreasing by 10.7% per 10% increase in F. The difference between these results is attributed to natural selection acting on variation within the inbred lines in extent of homozygosity, which can arise because of the peculiarly strong influence of linkage in Drosophila. Furthermore, differentiation between the lines may have reflected this variation rather than the various effects of different alleles fixed.—These results imply that the genetic variation in male-mating ability is largely due to dominance (no epistasis was detected) and are consonant with the proposition that intermale sexual selection is a very important component of fitness in D. melanogaster. There was no evidence of a positive correlation between male body size and competitive mating ability.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Santosh Jagadeeshan ◽  
Wilfried Haerty ◽  
Monika Moglinicka ◽  
Abha Ahuja ◽  
Scot De Vito ◽  
...  

Males have evolved a variety of behavioral, morphological, and physiological traits to manipulate their mates in order to maximize their chances of success. These traits are bound to influence how females respond to male behaviors and influence the nature of sexual selection/conflict. A common consequence of aggressive male mating strategies in Drosophila melanogaster is the reduction of female lifespan. Our study shows that this is common across members of the simulans clade. Reduced life expectancy of females implies that female contribution to a population is less than that of males per generation. Fitness differences between the sexes in every generation will invariably affect overall population fitness. How natural selection responds to the female deaths and thereby the unequal fitness of the sexes has rarely been addressed. We shed light on this issue and provide evidence, which suggests that additional gains of fitness by males due to their longevity and continued mating may provide one explanation as to why the loss of female fitness may be “invisible” (effectively neutral) to natural selection. Male driven sexual selection and additional, transgenerational gains of male fitness can be an important force of evolutionary change and need to be tested with other organisms.


Genetics ◽  
1981 ◽  
Vol 97 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Donald G Gilbert ◽  
Rollin C Richmond

ABSTRACT Recent studies of the function of the polymorphic seminal fluid enzyme, esterase 6, of Drosophila melanogaster suggested that it may act in the process of sperm displacement (Gilbert, Richmond and Sheehan, 1981a). This report examines the competitive ability of ejaculates from males homozygous for null or active alleles of esterase 6 under three experimental conditions that model aspects of sexual selection affecting males. The results demonstrate no significant difference in ejaculate competition between esterase 6 null or active male types, but marker males used for paternity identification had poorly competitive ejaculates. The proportion of second-male progeny, P  2, used as an index of competition is primarily influenced by second-male genotype and uninfluenced by female genotype. P2 can change with time from remating and be unaffected by different intensities of competition, which suggests a complex ejaculate competition mechanism.


Genetics ◽  
2010 ◽  
Vol 186 (1) ◽  
pp. 159-165 ◽  
Author(s):  
David B. Morton ◽  
Rachel Clemens-Grisham ◽  
Dennis J. Hazelett ◽  
Anke Vermehren-Schmaedick

2015 ◽  
Vol 93 (10) ◽  
pp. 735-740
Author(s):  
D.A. Croshaw ◽  
J.H.K. Pechmann

Understanding the phenotypic attributes that contribute to variance in mating and reproductive success is crucial in the study of evolution by sexual selection. In many animals, body size is an important trait because larger individuals enjoy greater fitness due to the ability to secure more mates and produce more offspring. Among males, this outcome is largely mediated by greater success in competition with rival males and (or) advantages in attractiveness to females. Here we tested the hypothesis that large male Marbled Salamanders (Ambystoma opacum (Gravenhorst, 1807)) mate with more females and produce more offspring than small males. In experimental breeding groups, we included males chosen specifically to represent a range of sizes. After gravid females mated and nested freely, we collected egg clutches and genotyped all adults and samples of hatchlings with highly variable microsatellite markers to assign paternity. Size had little effect on male mating and reproductive success. Breeding males were not bigger than nonbreeding males, mates of polyandrous females were not smaller than those of monogamous females, and there was no evidence for positive assortative mating by size. Although body size did not matter for male Marbled Salamanders, we documented considerable fitness variation and discuss alternative traits that could be undergoing sexual selection.


2017 ◽  
Vol 284 (1858) ◽  
pp. 20170424 ◽  
Author(s):  
Li Yun ◽  
Patrick J. Chen ◽  
Amardeep Singh ◽  
Aneil F. Agrawal ◽  
Howard D. Rundle

Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster , we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zeeshan Ali Syed ◽  
Vanika Gupta ◽  
Manas Geeta Arun ◽  
Aatashi Dhiman ◽  
Bodhisatta Nandy ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 140402 ◽  
Author(s):  
Ryan Schacht ◽  
Monique Borgerhoff Mulder

Characterizations of coy females and ardent males are rooted in models of sexual selection that are increasingly outdated. Evolutionary feedbacks can strongly influence the sex roles and subsequent patterns of sex differentiated investment in mating effort, with a key component being the adult sex ratio (ASR). Using data from eight Makushi communities of southern Guyana, characterized by varying ASRs contingent on migration, we show that even within a single ethnic group, male mating effort varies in predictable ways with the ASR. At male-biased sex ratios, men's and women's investment in mating effort are indistinguishable; only when men are in the minority are they more inclined towards short-term, low investment relationships than women. Our results support the behavioural ecological tenet that reproductive strategies are predictable and contingent on varying situational factors.


Sign in / Sign up

Export Citation Format

Share Document