scholarly journals Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

2015 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Wissam Al-Mutar ◽  
Turki Abdalla

The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller.

Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


2019 ◽  
Vol 11 (2) ◽  
pp. 55
Author(s):  
Nur Uddin

The optimal control design of the ground-vehicle active suspension system is presented. The active suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the system are derived by applying Newton’s second law. The control law of the active suspension system is designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the active suspension system to a passive suspension system. Both suspension systems are simulated in computer. The simulation results show that the active suspension system significantly improves the vehicle ride comfort of the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical velocity, and 1.77% RMS of vertical acceleration.


Author(s):  
Sunil Kumar Sharma ◽  
Rakesh Chandmal Sharma

A semi-active suspension system using Magnetorheological (MR) damper overcomes all the inherent limits of passive and active suspension systems and combines the advantages of both. This paper gives a concise introduction to the suspension system of a passenger vehicle which is presented along with the analysis of semi-active suspension system using MR fluid dampers based on Bingham model. MR dampers are filled with MR fluids whose properties can be controlled by applying voltage signal. To further prove the statement, a quarter car model with two degrees of freedom has been used for modeling the suspension system the sprung mass acceleration of passive suspension system has been compared with the semi-active suspension system using the Bingham model for MRF damper. Simulink/MATLAB is used to carry out the simulation. The results drawn show that the semi-active suspension system performed better than the passive suspension system in terms of vehicle stability.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-6
Author(s):  
Mustafa Mohammed Matrood ◽  
Ameen Ahmed Nassar

The purpose of this research is to control a quarter car suspension system and also to reduce the fluctuated movement caused by passing thevehicle over road bump using modified PID (Proportional Integral and Derivative) controller. The proposed controller deals with dual loopfeedback signals instead of single feedback signal as in the conventional PID controller. The structure of the modified PID controller wascreated by moving the proportional and derivative actions in the feedback path while remaining the integral action in the forward path. Thus,high accuracy results were obtained. Firstly, modelling and simulation of linear passive suspension system for a quarter car system wasperformed using Matlab – Simulink software. Then the linear suspension system was activated and simulated by using an active hydraulicactuator to generate the necessary force which can be regulated and controlled by the proposed controller. The performance of whole systemhas been enhanced with a modified PID controller.


2018 ◽  
Vol 7 (3.17) ◽  
pp. 43
Author(s):  
Muna Khalil Shehan ◽  
B B. Sahari ◽  
Nawal Aswan B. Abdul Jalil ◽  
Tang Sai Hong ◽  
Azizan B. As'arry

This paper addresses ride comfort for quarter car active suspension system. Suspension dynamics are modelled by using two degree of freedom vibrating system, linear with time invariant quarter car model to capture the system dynamics when it is subjected to the road disturbance with different velocities. Global search optimization method is a strategy that overcomes the defects of the suspension system performance index formula, objective function (discontinuity, non-smooth) is used to find the optimal suspension spring stiffness and damping coefficient. The optimal active suspension system design is tested when the active elements is malfunctioned. The optimal design is compared with optimal passive suspension system in terms of ride comfort. The results showed that the optimal passive elements of optimal active suspension system provided better ride comfort ( ) even at the absent of the active elements compared to optimal passive suspension system. 


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Sign in / Sign up

Export Citation Format

Share Document