H∞ Control of Active Suspension System for a Quarter Car Model

Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.

2019 ◽  
Vol 11 (2) ◽  
pp. 55
Author(s):  
Nur Uddin

The optimal control design of the ground-vehicle active suspension system is presented. The active suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the system are derived by applying Newton’s second law. The control law of the active suspension system is designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the active suspension system to a passive suspension system. Both suspension systems are simulated in computer. The simulation results show that the active suspension system significantly improves the vehicle ride comfort of the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical velocity, and 1.77% RMS of vertical acceleration.


Author(s):  
Sunil Kumar Sharma ◽  
Rakesh Chandmal Sharma

A semi-active suspension system using Magnetorheological (MR) damper overcomes all the inherent limits of passive and active suspension systems and combines the advantages of both. This paper gives a concise introduction to the suspension system of a passenger vehicle which is presented along with the analysis of semi-active suspension system using MR fluid dampers based on Bingham model. MR dampers are filled with MR fluids whose properties can be controlled by applying voltage signal. To further prove the statement, a quarter car model with two degrees of freedom has been used for modeling the suspension system the sprung mass acceleration of passive suspension system has been compared with the semi-active suspension system using the Bingham model for MRF damper. Simulink/MATLAB is used to carry out the simulation. The results drawn show that the semi-active suspension system performed better than the passive suspension system in terms of vehicle stability.


Author(s):  
D.V.A. Rama Sastry ◽  
K.V. Ramana ◽  
N. Mohan Rao ◽  
M. Phani Kumar ◽  
V.S.S. Rama Chandra Reddy

Exposure of human body to vehicular vibrations in transit may lead to the human discomfort. Ride comfort is one of the major issues in design of automobiles. Magneto rheological (MR) dampers are emerging as most feasible solution for various applications in controlling vibrations. An MR damper is a semi-active device, which will offer the advantages of both active and passive suspension. In this study, the MR damper based semi-active suspension system for a car is analysed for ride comfort of 7 degrees of freedom model human body lumped mass, considering head, upper torso, lower torso and pelvis, seated over a seat of a quarter car model and is compared with that of similar system using passive damper. A MR damper is fabricated and is filled with MR fluid made of Carbonyl iron powder and Silicone oil added with additive. Modified Bouc-Wen Model developed by Spencer is used to model the behaviour of MR damper. All the parameters of this model are identified using data acquired from experiments conducted to characterise MR damper. Further, using the Spencer model of MR damper, the human body seated over quarter car is simulated by implementing a semi-active suspension system for analysing the resulting displacement and acceleration of the human body. The ride comfort performance of vehicle model with passive suspension system is compared with corresponding semi-active suspension system. The simulation and analysis are carried out using MATLAB/SIMULINK.


Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


Author(s):  
Lalit Pankaj Grover

This paper discusses the impact of adding an inerter to the conventional suspension system for a passenger car. The Inerter was recently introduced as an ideal mechanical twoterminal element which is a substitute for the mass element with the applied force, proportional to the relative acceleration across the terminals. Till now, ideal Inerters have been applied to Formula 1 cars, motorcycle and train suspension systems, in which significant performance improvement was achieved. This paper explores the effect of adding an inerter (in series) to the conventional suspension system for a passenger car in terms of ride comfort by comparing the amplitude of displacement and jerk of sprung and unsprung mass. This is accomplished by comparing the ride comfort of a quarter-car model with a conventional suspension system to the ride comfort of a quarter-car model with an inerter added in series.


2015 ◽  
Vol 761 ◽  
pp. 238-244
Author(s):  
Che Amran Aliza ◽  
Fen Ying Chin ◽  
Mariam Md Ghazaly ◽  
Shin Horng Chong ◽  
Vasanthan Sakthivelu

In this paper, a construction of a prototype to represent passive vehicle suspension system for quarter car model is considered. The prototype is represented by two degree-of freedom quarter-car model which are conventionally used by researchers. This laboratory equipment is developed in order to familiarize students with 2 DoF passive suspension system model. It consists of two masses, two springs and a damper. This equipment is easily dismantled and could be assembled with different spring and damper constants which contribute to different characteristics of the suspension system. A number of experiments have been carried out using the experiment setup in order to identify the suspension system characteristics i.e. experiments with different vehicle body mass, different period for one pulse and different pulse width of input pressure of the road excitation have been conducted. The experiment results are evaluated based on the vehicle body displacement and tire displacement of the prototype. Experiment results show that the pulse width of the input pressure or road profile is directly affected the characteristic of this passive suspension system. Lastly, simulations were done in order to compare the simulation and experimental results.


2018 ◽  
Vol 7 (3.17) ◽  
pp. 43
Author(s):  
Muna Khalil Shehan ◽  
B B. Sahari ◽  
Nawal Aswan B. Abdul Jalil ◽  
Tang Sai Hong ◽  
Azizan B. As'arry

This paper addresses ride comfort for quarter car active suspension system. Suspension dynamics are modelled by using two degree of freedom vibrating system, linear with time invariant quarter car model to capture the system dynamics when it is subjected to the road disturbance with different velocities. Global search optimization method is a strategy that overcomes the defects of the suspension system performance index formula, objective function (discontinuity, non-smooth) is used to find the optimal suspension spring stiffness and damping coefficient. The optimal active suspension system design is tested when the active elements is malfunctioned. The optimal design is compared with optimal passive suspension system in terms of ride comfort. The results showed that the optimal passive elements of optimal active suspension system provided better ride comfort ( ) even at the absent of the active elements compared to optimal passive suspension system. 


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

A new variable stiffness suspension system based on a recent variable stiffness mechanism is proposed. The overall system is composed of the traditional passive suspension system augmented with a variable stiffness mechanism. The main idea is to improve suspension performance by varying stiffness in response to road disturbance. The system is analyzed using a quarter car model. The passive case shows much better performance in ride comfort over the tradition counterpart. Analysis of the invariant equation shows that the car body acceleration transfer function magnitude can be reduced at both the tire-hop and rattle space frequencies using the lever displacement transfer function thereby resulting in a better performance over the traditional passive suspension system. An H∞ controller is designed to correct for the performance degradation in the rattle space thereby providing the best trade-off between the ride comfort, suspension deflection and road holding.


2000 ◽  
Vol 23 (3/4) ◽  
pp. 297 ◽  
Author(s):  
Toshio Yoshimura ◽  
Hirofumi Kubota ◽  
Kazuyoshi Takei ◽  
Masao Kurimoto ◽  
Junichi Hino

Sign in / Sign up

Export Citation Format

Share Document