scholarly journals Discreteness criteria and algebraic convergence theorem for subgroups in $\mathit{PU}(1,n;C)$

2006 ◽  
Vol 82 (3) ◽  
pp. 49-52 ◽  
Author(s):  
Wensheng Cao ◽  
Xiantao Wang
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Huani Qin ◽  
Yueping Jiang ◽  
Wensheng Cao

We obtain an analogue of Jørgensen's inequality in quaternionic hyperbolic space. As an application, we prove that if ther-generator quaternionic Kleinian group satisfies I-condition, then its algebraic limit is also a quaternionic Kleinian group. Our results are generalizations of the counterparts in then-dimensional real hyperbolic space.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Xi Fu

We investigate the discreteness and convergence of complex isometry groups and some discreteness criteria and algebraic convergence theorems for subgroups ofPU(n,1)are obtained. All of the results are generalizations of the corresponding known ones.


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Antoine Gautier ◽  
Matthias Hein ◽  
Francesco Tudisco

AbstractWe analyze the global convergence of the power iterates for the computation of a general mixed-subordinate matrix norm. We prove a new global convergence theorem for a class of entrywise nonnegative matrices that generalizes and improves a well-known results for mixed-subordinate $$\ell ^p$$ ℓ p matrix norms. In particular, exploiting the Birkoff–Hopf contraction ratio of nonnegative matrices, we obtain novel and explicit global convergence guarantees for a range of matrix norms whose computation has been recently proven to be NP-hard in the general case, including the case of mixed-subordinate norms induced by the vector norms made by the sum of different $$\ell ^p$$ ℓ p -norms of subsets of entries.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Sign in / Sign up

Export Citation Format

Share Document