scholarly journals Investigation of the Effects of Hydraulic Transient due to Instantaneous Valve Closure in a Petroleum Pipeline

2021 ◽  
Vol 3 (2) ◽  
pp. 71
Author(s):  
A. B. Muhammad ◽  
A. Nasir ◽  
S. A. Ayo ◽  
Bori Ige
Energy ◽  
2021 ◽  
pp. 121604
Author(s):  
Xuejing Zheng ◽  
Fangshu Hu ◽  
Yaran Wang ◽  
Lijun Zheng ◽  
Xinyong Gao ◽  
...  

1985 ◽  
Vol 12 (2) ◽  
pp. 241-264 ◽  
Author(s):  
Bryan W. Karney ◽  
Eugen Ruus

Maximum pressure head rises, which result from total closure of the valve from an initially fully open position, are calculated and plotted for the valve end and for the midpoint of a simple pipeline. Uniform, equal-percentage, optimum, and parabolic closure arrangements are analysed. Basic parameters such as pipeline constant, relative closure time, and pipe wall friction are considered with closures from full valve opening only. The results of this paper can be used to draw the maximum hydraulic grade line along the pipe with good accuracy for the closure arrangements considered. It is found that the equal-percentage closure arrangement yields consistently less pressure head rise than does the parabolic closure arrangement. Further, the optimum closure arrangement yields consistently less head rise than the equal-percentage one. Uniform closure produces pressure head rise that usually lies between those produced by the parabolic and the equal-percentage closure arrangements, except for the range of low pressure head rise combined with low or zero friction, where the rise due to uniform closure approaches that produced by optimum closure.


1964 ◽  
Vol 14 (5) ◽  
pp. 387-391 ◽  
Author(s):  
D. M. MACCANON ◽  
F. AREVALO ◽  
E. C. MEYER

2018 ◽  
Vol 35 (7) ◽  
pp. 2502-2513 ◽  
Author(s):  
Ling Wang ◽  
Fujun Wang ◽  
Bryan William Karney ◽  
Ahmad Malekpour ◽  
Zhengwei Wang

Purpose The velocity head is usually neglected in the energy equation for a pipeline junction when one-dimensional (1D) hydraulic transient flow is solved by method of characteristics. The purpose of this paper is to investigate the effect of velocity head on filling transients in a branched pipeline by an energy equation considering velocity head. Design/methodology/approach An interface tracking method is used to locate the air–water interface during pipeline filling. The pressured pipe flow is solved by a method of characteristics. A discrete gas cavity model is included to permit the occurrence of column separation. A universal energy equation is built by considering the velocity head. The numerical method is provisionally verified in a series pipeline and the numerical results and experimental data accord well with each other. Findings The numerical results show that some differences in filling velocity and piezometric head occur in the branched pipeline. These differences arise because the velocity head in the energy equation can become an important contributor to the hydraulic response of the system. It is also confirmed that a local high point in the profile is apt to experience column separation during rapid filling. Significantly, the magnitude of overpressure and cavity volume induced by filling transients at the local high point is predicted to increase with the velocity in the pipes. Originality/value The velocity head in the energy equation for a pipeline junction could play an important role in the prediction of filling velocity, piezometric head and column separation phenomenon, which should be given more attention in 1D hydraulic transient analysis.


Sign in / Sign up

Export Citation Format

Share Document