scholarly journals Impact of high WPPs penetration on the Vietnam Power System

Author(s):  
Hanh Thi Nguyet Nguyen ◽  
Vijay Vittal

Wind power installed capacity is expected to reach 1,000 MW and 6,200 MW in the Vietnam Power System (VPS) in 2020 and 2030, respectively. But detailed dynamic analysis of the wind power plants’ (WPPs) integration into the VPS is still scarce. In this paper, first, the impact of WPPs’ integration on the dynamic voltage performance and the wind turbine generator (WTG) low-voltage-ride-through (LVRT) requirement in the VPS for the year 2020 is studied. Then, case studies on the VPS for the year 2020 with different levels of wind penetration and different values of WTG’s maximum allowable voltage sag are studied. Simulation results show that the 2020 VPS can lose as much as 1,000 MW (100%) of WPP’s generated power following a severe contingency if the WTG’s LVRT capability is not considered. In some scenarios, the loss of WPPs’ generated power can cascade into a power system islanding situation which in turn could cause massive load shedding (15%) in the load-rich subsystem and result in wide variations of the electrical parameters of generators near the islanding boundary.

2012 ◽  
Vol 499 ◽  
pp. 400-404
Author(s):  
Jian Hong Zheng ◽  
Jie Feng Li ◽  
Yu Zhi Gao

With the rapid development of the wind power, it is no longer an isolated power system and gradually incorporated in the local power grid. However, as the increasing proportion of the installed wind power capacity in the power grid, the affection of the wind turbine to the region power system is getting heavier, which inevitably bring some new problems to the power system. The low voltage ride through (LVRT) is the direct embodiment of the power quality. In this paper, we fist analyze the impact of the voltage drop on the double-fed wind turbine. Then, a LVRT control method is proposed based on hardware realization. The detailed explanation of the proposed control method is given at last.


2014 ◽  
Vol 607 ◽  
pp. 531-535
Author(s):  
Chen Jian ◽  
Ren Yong Feng ◽  
Hu Hong Bin

with the increasing proportion of wind power in whole power system ,the influence between wind power system and grid become more and more seriously ,so it is great important to research how to keep the connection between the wind power system and grid when grid voltage drops .The paper presents a new method to realize the low voltage ride - through (LVRT) of DFIG by using dynamic voltage restorer (DVR). Once the grid voltage drops,DVR will be put into use and produce compensation voltage to keep the stator side voltage steady .And it also can stop operation after the fault resolution.The paper builds a simulation model of DFIG and gives simulation results on PSCAD/EMTDC platform .


2011 ◽  
Vol 14 (1) ◽  
pp. 46-55
Author(s):  
Chuong Trong Trinh

In this paper the effect of the wind power plants with Double Fed Induction Generator (DFIG) on the electric power system operation is investigated. The important characteristics such as: voltage quality, grid voltage stability, active and reactive loss of a DFIG at different fault conditions are studied. The simulation results clealy show the effect of the wind power plants on the grid voltage stability and power quality of electric power system.


2017 ◽  
Vol 32 (3) ◽  
pp. 1108-1116 ◽  
Author(s):  
Pouyan Pourbeik ◽  
Juan J. Sanchez-Gasca ◽  
Jayapalan Senthil ◽  
James D. Weber ◽  
Pouya Sajjad Zadehkhost ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1828 ◽  
Author(s):  
Izabela Piasecka ◽  
Patrycja Bałdowska-Witos ◽  
Józef Flizikowski ◽  
Katarzyna Piotrowska ◽  
Andrzej Tomporowski

Controlling the system—the environment of power plants is called such a transformation—their material, energy and information inputs in time, which will ensure that the purpose of the operation of this system or the state of the environment, is achieved. The transformations of systems and environmental inputs and their goals describe the different models, e.g., LCA model groups and methods. When converting wind kinetic energy into electricity, wind power plants emit literally no harmful substances into the environment. However, the production and postuse management stages of their components require large amounts of energy and materials. The biggest controlling problem during postuse management is wind power plant blades, followed by waste generated during their production. Therefore, this publication is aimed at carrying out an ecological, technical and energetical transformation analysis of selected postproduction waste of wind power plant blades based on the LCA models and methods. The research object of control was eight different types of postproduction waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues, surplus mater), mainly made of polymer materials, making it difficult for postuse management and dangerous for the environment. Three groups of models and methods were used: Eco-indicator 99, IPCC and CED. The impact of analysis objects on human health, ecosystem quality and resources was controlled and assessed. Of all the tested waste, the life cycle of resin discs made of epoxy resin was characterized by the highest level of harmful technology impact on the environment and the highest energy consumption. Postuse control and management in the form of recycling would reduce the negative impact on the environment of the tested waste (in the perspective of their entire life cycle). Based on the results obtained, guidelines and models for the proecological postuse control of postproduction polymer waste of wind power plants blades were proposed.


Sign in / Sign up

Export Citation Format

Share Document