Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics

2012 ◽  
Vol 36 (12) ◽  
pp. 1489-1495 ◽  
Author(s):  
Kwang-Phil Park ◽  
Ju-Hwan Cha ◽  
Namkug Ku ◽  
A-Ra Jo ◽  
Kyu-Yeul Lee
Author(s):  
Mohammed Khair Al-Solihat ◽  
Meyer Nahon ◽  
Kamran Behdinan

This paper presents a rigid multibody dynamic model to simulate the dynamic response of a spar floating offshore wind turbine (FOWT). The system consists of a spar floating platform, the moorings, the wind turbine tower, nacelle, and the rotor. The spar platform is modeled as a six degrees-of-freedom (6DOFs) rigid body subject to buoyancy, hydrodynamic and moorings loads. The wind turbine tower supports rigid nacelle and rotor at the tip. The rigid rotor is modeled as a disk spinning around its axis and subject to the aerodynamic load. The generator torque control law is incorporated into the system dynamics to capture the rotor spinning speed response when the turbine is operating below the rated wind speed. The equations of motions are derived using Lagrange's equation in terms of the platform quasi-coordinates and rotor spin speed. The external loads due to hydrostatics, hydrodynamics, and aerodynamics are formulated and incorporated into the equations of motion. The dynamic simulations of the spar FOWT are performed for three load cases to examine the system eigen frequencies, free decay response, and response to a combined wave and wind load. The results obtained from the present model are validated against their counterparts obtained from other simulation tools, namely, FAST, HAWC2, and Bladed, with excellent agreement. Finally, the influence of the rotor gyroscopic moment on the system dynamics is investigated.


Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Due to platform motions, floating offshore wind turbine loads are increased. Among proposed platform concepts, tension leg platform introduces least wind turbine load increase. To reduce wind turbine loads, extra actuators have been added to the platform to suppress the tension leg platform motion. For these actuators controller design, it is critical to derive a mathematical model of the platform-wind turbine-actuator system. In this paper, a reduced 13 DOFs model is derived using Lagrange equation and validated with simulation results from FAST. This reduced model is simple, but accurate enough to predict wind turbine and platform response under wind and wave disturbance. Based on the proposed model, an LQR controller is designed. One simulation case shows that the wind turbine tower load can be effectively reduced by actively controlled DVAs.


Author(s):  
M.J. Legaz ◽  
P. Mayorga ◽  
J. Fernández ◽  
J. Muñoz ◽  
M. Bruno

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4138
Author(s):  
Kwansu Kim ◽  
Hyunjong Kim ◽  
Hyungyu Kim ◽  
Jaehoon Son ◽  
Jungtae Kim ◽  
...  

In this study, a resonance avoidance control algorithm was designed to address the tower resonance problem of a semi-submersible floating offshore wind turbine (FOWT) and the dynamic performance of the wind turbine, floater platform, and mooring lines at two exclusion zone ranges were evaluated. The simulations were performed using Bladed, a commercial software for wind turbine analysis. The length of simulation for the analysis of the dynamic response of the six degrees of freedom (DoF) motion of the floater platform under a specific load case was 3600 s. The simulation results are presented in terms of the time domain, frequency domain, and using statistical analysis. As a result of applying the resonance avoidance control algorithm, when the exclusion zone range was ±0.5 rpm from the resonance rpm, the overall performance of the wind turbine was negatively affected, and when the range was sufficiently wide at ±1 rpm, the mean power was reduced by 0.04%, and the damage equivalent load of the tower base side–side bending moment was reduced by 14.02%. The tower resonance problem of the FOWT caused by practical limitations in design and cost issues can be resolved by changing the torque control algorithm.


Sign in / Sign up

Export Citation Format

Share Document