On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

2015 ◽  
Vol 39 (5) ◽  
pp. 499-505 ◽  
Author(s):  
Jae Eun Kim
2017 ◽  
Vol 29 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Dominik Gedeon ◽  
Stefan J Rupitsch

We present a system simulation approach for piezoelectric vibration energy harvesting devices. Accurate modeling of the electromechanical structure is achieved by the finite element method. For consideration of power electronic circuits as a means of energy extraction, the finite element model is iteratively coupled to electric circuits via Simulink. The high computational cost of conventional finite element calculations is overcome by a specialized modal truncation method for general linear piezoelectric structures. In doing so, the simulation approach allows efficient prediction of mechanical quantities (e.g. displacements, stresses) as well as electric potentials in the continuum under the influence of arbitrary electrical circuits. Several examples are studied to validate the truncation approach against analytical models and full finite element models. The applicability of the method is demonstrated for a piezoelectric vibration energy harvester in conjunction with a power electronic circuit.


Author(s):  
Xiangjian Duan ◽  
Dongxing Cao ◽  
Xiaoguang Li ◽  
Yongjun Shen

AbstractVibration energy harvesters (VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system (MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame (PF) and an amplification frame (AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000261-000265
Author(s):  
S T Riches ◽  
K Doyle ◽  
N Tebbit ◽  
Y Jia ◽  
A Seshia

Distributed electronics for improving the accuracy of sensing in harsh high temperature environments, such as aero-engine and down-well is a growing field, where reduced power input requirements in cabling and batteries is viewed a key enabler for accelerating the adoption of high temperature electronics. Although batteries are available that can operate up to 200°C, they offer limited life at high temperatures and are bulky, increasing the costs of deployment and maintenance. Cabling also adds weight and takes up space in limited access applications. Energy harvesting in-situ offers the opportunity to make a step change in the design of high temperature electronics modules and in expanding their possible range of applications; for example, in sensor systems for combustor and turbine monitoring in aero-engines. This paper covers an assessment of MEMS vibration energy harvesting technology for high temperature sensing applications. MEMS devices based on the principle of parametric resonance, using AlN on Silicon have been designed and fabricated, along with sourcing of high temperature components for rectification, impedance matching and energy storage. The MEMS devices have been packaged into ceramic chip carriers and measured for energy output from a random vibration profile representative of an aerospace application. The measured output from the MEMS vibration energy harvester is capable of providing sufficient power to be of interest for autonomous sensing applications. This paper reports on the performance of the MEMS vibration energy harvesting devices and their associated circuitry at room temperature and at temperatures of up to 150°C. The challenges remaining to develop robust energy harvesting devices that could be applied in aero-engine, down-well and other high temperature applications are described. This work has been carried out under the Innovate UK supported project HI-VIBE, in a collaboration between GE Aviation Systems – Newmarket and the University of Cambridge.


2019 ◽  
Vol 27 (9) ◽  
pp. 1968-1980
Author(s):  
马天兵 MA Tian-bing ◽  
陈南南 CHEN Nan-nan ◽  
吴晓东 WU Xiao-dong ◽  
杜 菲 DU Fei ◽  
丁永静 DING Yong-jing

2019 ◽  
Vol 7 (5) ◽  
pp. 1948-1960
Author(s):  
Yang Li ◽  
Changjun Xie ◽  
Shuhai Quan ◽  
Wenlian Li ◽  
Ying Shi

Sign in / Sign up

Export Citation Format

Share Document