scholarly journals Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier

Author(s):  
Xiangjian Duan ◽  
Dongxing Cao ◽  
Xiaoguang Li ◽  
Yongjun Shen

AbstractVibration energy harvesters (VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system (MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame (PF) and an amplification frame (AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions.

Nano Letters ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 726-731 ◽  
Author(s):  
Chieh Chang ◽  
Van H. Tran ◽  
Junbo Wang ◽  
Yiin-Kuen Fuh ◽  
Liwei Lin

2019 ◽  
Vol 11 (9) ◽  
pp. 168781401986568
Author(s):  
Oleg Goushcha ◽  
Robert Felicissimo ◽  
Amir H Danesh-Yazdi ◽  
Yiannis Andreopoulos

The possibility of extracting wind power from unique configurations embedded in moving vehicles using microturbine devices has been investigated. In such environments with moving frames or platforms, powered either by humans like bicycles or by chemical reactions like automobiles, the specific power of the air motion is much greater and less intermittent than in stationary wind turbines anchored to the ground in open atmospheric conditions. In a translational frame of reference, the rate of work done by the drag force acting on the wind harnessing device due to the relative motion of air should be taken into account in the overall performance evaluation through an energy balance. A device with a venting tube has been tested that connects a high-pressure stagnating flow region in the front of the vehicle with a low-pressure region at its rear. Our analysis identified two key areas to focus on for potentially significant rewards: (1) vehicles with high energy conversion efficiency, which require a high mass flow rate through the venting duct, and (2) vehicles with low energy conversion efficiency with wakes, which will be globally affected by the introduction of the venting duct device in a manner that reduces their drag so that there is a net gain in power generation.


2020 ◽  
Vol 8 (38) ◽  
pp. 13270-13285 ◽  
Author(s):  
Krzysztof T. Wojciechowski ◽  
Taras Parashchuk ◽  
Bartlomiej Wiendlocha ◽  
Oleksandr Cherniushok ◽  
Zinovi Dashevsky

Advanced electronic structure engineering was applied for obtaining a record-high energy conversion efficiency for n-type PbTe.


2019 ◽  
Vol 30 (16) ◽  
pp. 2382-2395
Author(s):  
Uchenna Diala ◽  
SM Mahdi Mofidian ◽  
Zi-Qiang Lang ◽  
Hamzeh Bardaweel

This work investigates a vibration isolation energy harvesting system and studies its design to achieve an optimal performance. The system uses a combination of elastic and magnetic components to facilitate its dual functionality. A prototype of the vibration isolation energy harvesting device is fabricated and examined experimentally. A mathematical model is developed using first principle and analyzed using the output frequency response function method. Results from model analysis show an excellent agreement with experiment. Since any vibration isolation energy harvesting system is required to perform two functions simultaneously, optimization of the system is carried out to maximize energy conversion efficiency without jeopardizing the system’s vibration isolation performance. To the knowledge of the authors, this work is the first effort to tackle the issue of simultaneous vibration isolation energy harvesting using an analytical approach. Explicit analytical relationships describing the vibration isolation energy harvesting system transmissibility and energy conversion efficiency are developed. Results exhibit a maximum attainable energy conversion efficiency in the order of 1%. Results suggest that for low acceleration levels, lower damping values are favorable and yield higher conversion efficiencies and improved vibration isolation characteristics. At higher acceleration, there is a trade-off where lower damping values worsen vibration isolation but yield higher conversion efficiencies.


Sign in / Sign up

Export Citation Format

Share Document