Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

2016 ◽  
Vol 40 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Yong Chul Kwon ◽  
Jong Hun Kang ◽  
Sang Sik Kim
Author(s):  
Wensheng Liu ◽  
T. J. Nye

Open die forging is a manufacturing process with a number of advantages; in particular it is an inherently flexible manufacturing process that makes efficient use of raw material. A fundamental drawback of this process, however, is the difficulty found in creating forging programs to control part manipulation and forming steps. A-priori approaches to creating these programs, such as by using FEM simulations or using modeling materials, are slow and have a strong tendency for errors to accumulate when predicting the results of consecutive forming steps. In this paper we present a new approach in which process feedback is used between forming steps to update a part geometry model that allows the forming sequence to be adjusted adaptively. This approach has been implemented in a simulated forging cell that uses non-linear FEM analyses to predict the effects of each forming step. A fully adaptive control scheme has been implemented that efficiently forges bars of one cross sectional shape into another shape, such as square to round or hexagonal. Programming the forging system with this scheme has proved particularly simple; the shape of the raw material is measured, and a desired shape is specified. Physical experiments have confirmed the simulation results.


2020 ◽  
Vol 110 (7-8) ◽  
pp. 1869-1892
Author(s):  
Federico Campi ◽  
Marco Mandolini ◽  
Claudio Favi ◽  
Emanuele Checcacci ◽  
Michele Germani

Abstract Open-die forging is a manufacturing process commonly used for realising simple shaped components with high mechanical performances and limited capability in terms of production volume. To date, an analytical model for estimating the costs of components manufactured with this technology is still an open issue. The paper aims to define an analytical model for cost estimation of axisymmetric components manufactured by open-die forging technology. The model is grounded on the analysis of geometrical features available at the design stage providing a detailed cost breakdown in relation to all the process phases and the raw material. The model allows predicting product cost, linking geometrical features and cost items, to carry out design-to-cost actions oriented to the reduction of manufacturing cost. The model is mainly conceived for design engineers, cost engineers and buyers, respectively, for improving the product design, the manufacturing process and the supply chain. Cost model and related schemas for collecting equations and data are presented, including the approach for sizing the raw material and a set of rules for modelling the related cost. Finally, analytic equations for modelling the cost of the whole forging process (i.e. billet cutting, heating, pre-smoothing, smoothing, upsetting, max-shoulder cogging, necking and shoulders cogging) are reported. The cost model has been tested on eight cylindrical parts such as discs and shafts with different shapes, dimensions and materials. Two forge masters have been involved in the testing phase. The absolute average deviation between the actual and estimated costs is approximately 4% for raw material and 21% for the process. The absolute average deviation on the total cost (raw material and manufacturing process) is approximately 5%.


1999 ◽  
Author(s):  
T. J. Nye

Abstract The open die forging process can provide a number of benefits if its costs can be made competitive through automation. This paper describes a control strategy for automated open die forging forming sequence generation. An upper bound solution for forging with radiused tools is developed, along with a method for using this solution to estimate forming results, a necessary component of the control strategy. Model predictions are compared to physical experimental data using plasticine, and show good agreement.


Author(s):  
A. Shirizly ◽  
G. Harpaz ◽  
A. Shmuel
Keyword(s):  

2021 ◽  
pp. 489-498
Author(s):  
Volodymyr Kukhar ◽  
Oleg Vasylevskyi ◽  
Olha Khliestova ◽  
Ivan Berestovoi ◽  
Elena Balalayeva

Author(s):  
Young Seon Lee ◽  
Y.C. Kwon ◽  
Yong Nam Kwon ◽  
Jung Hwan Lee ◽  
S.W. Lee ◽  
...  

Author(s):  
Changya Yan ◽  
Feng Gao ◽  
Jie Chen

A virtual plant, built in a computer by using computer graphic (CG) and Virtual Reality (VR), can model the precise and whole structure of an integrated manufacturing system and simulate its physical and logical behavior in operation. This paper aims to reveal the advanced modeling and VR realization methods in developing a virtual forging plant for automatic and programmed open-die forging processes. Two sub-models, component model and process model, compose the overall modeling architecture of a virtual integrated open-die forging plant. The coordinated motion simulation of the integrated system is realized through a kinematic modeling method. A compound stiffness modeling method is then developed to simulate the mechanical behavior in operation. The process simulation of the virtual plant is conducted on the basis of the above two modeling methods. A practical application example of virtual plant for integrated open-die forging process is presented towards the end.


Sign in / Sign up

Export Citation Format

Share Document