scholarly journals Study on Direct Mixing Type Axial Flow Cyclone Heat Exchanger between Gas and Particles. 1st Report. Proposal and Gas-Particle Separation Performance.

1997 ◽  
Vol 11 (1) ◽  
pp. 37-45
Author(s):  
Takehiko YOKOMINE ◽  
Akihiko SHIMIZU ◽  
Tatsurou NAGAFUCHI ◽  
Mitsuhiro NAKAMURA
1998 ◽  
Vol 12 (1) ◽  
pp. 50-57
Author(s):  
Takehiko YOKOMINE ◽  
Akihiko SHIMIZU ◽  
Tatsurou NAGAFUCHI ◽  
Yasuharu KAWABATA ◽  
Mitsuhiro NAKAMURA

Author(s):  
Jun Manabe ◽  
Jiro Kasahara ◽  
Toshiki Kojima ◽  
Issaku Fujita

This paper introduces the development of the current model Moisture Separator Reheater (MSR) for nuclear power plant (NPP) turbines, commercially placed in service in the period 1984–1997, focusing on the mist separation performance of the MSR along with drainage from heat exchanger tubes. A method of predicting the mist separation performance was devised first based on the observation of mist separation behaviors under an air-water test, then developed for the application to predict under the steam conditions, followed by the verification in comparison with the actual results of a steam condition test. The instability of tube drainage associated with both sub-cooling and temperature oscillation, which may adversely affect the seal welding of tubes to tube sheet owing to thermal fatigue, was measured on an existing unit both to clarify the behaviors and to develop a method to suppress them. Both methods were applied to current model MSR and the effectiveness of the methods was demonstrated. A new concept MSR for 1,700 MW class APWR units is put in perspective based on the technologies, alongside a multidisciplinary optimum design evaluating the heat exchanger tube bundle.


1989 ◽  
Vol 111 (4) ◽  
pp. 428-434 ◽  
Author(s):  
A. Yasuo ◽  
M. P. Paidoussis

In some heat exchangers and steam generators, the flow is predominantly axial, and the external fluid flows between baffled compartments through enlarged holes in the baffles around the heat exchanger tubes. Thus, the tube is subjected to relatively high flow velocities over small portions of its length, in the baffle locations. In this paper, the dynamics of such an idealized system is investigated, involving a cylindrical beam with pinned ends in axial flow, going through a baffle plate of finite thickness at some intermediate point, with small radial clearance. The fluid forces along the tube are formulated in a manner reminiscent of the transfer-matrix technique, since the character of these forces changes drastically along the tube. The fluid forces are determined approximately by means of potential flow theory, and viscous effects are taken into account only in a global sense. It was found that if the flow passage through the baffle plate is diffuser-shaped, negative fluid-dynamic damping is generated therein, destabilizing the system and leading to flutter at relatively low flow velocities. The instability depends critically on the shape of the hole through the baffle and on the clearance; thus a convergent-type flow passage does not lead to instability. The negative fluid-dynamic damping is linearly proportional to the flow velocity through the baffle.


Sign in / Sign up

Export Citation Format

Share Document