Residue analysis of fungicide boscalid in cucumbers following applications of boscalid 50% water dispersible granule

2020 ◽  
Vol 15 (2) ◽  
Author(s):  
M.-F. Chen ◽  
J.-W. Huang ◽  
H.-P. Chien
1992 ◽  
Vol 6 (2) ◽  
pp. 317-321 ◽  
Author(s):  
Rick A. Boydston

Experimental controlled release starch granules (CRSG) containing 5.3% a.i. (w/w) norflurazon or 6% a.i. (w/w) simazine retarded the leaching of both herbicides in loamy sand soil columns when compared to commercial formulations of norflurazon [80% (w/w) dry flowable] or simazine [90% (w/w) water dispersible granule]. Barley bioassays indicated norflurazon and simazine remained in the surface 0 to 2.5 cm of soil when applied as CRSG formulations and moved to a depth of 15 cm when applied as commercial dry formulations and leached with 6 cm of water. CRSG placed on pre-wetted soil columns began to release norflurazon by 7 d at 25 C or 14 d at 15 C, and subsequent leaching moved norflurazon beyond the top 2.5 cm of the soil column.


2010 ◽  
Vol 24 (4) ◽  
pp. 416-424 ◽  
Author(s):  
John C. Frihauf ◽  
Phillip W. Stahlman ◽  
Patrick W. Geier ◽  
Dallas E. Peterson

Field experiments in winter wheat were initiated at two locations in the fall of 2006 and 2007 to evaluate winter annual broadleaf weeds and winter wheat response to POST applications of two saflufenacil formulations applied alone and in combination with 2,4-D amine. Emulsifiable concentrate (EC) and water-dispersible granule (WG) formulations of saflufenacil at 13, 25, and 50 g ai ha−1were applied with 1.0% (v/v) crop oil concentrate (COC) and mixed with 2,4-D amine at 533 g ae ha−1without adjuvant. Regardless of rate or formulation, saflufenacil plus COC and saflufenacil plus 2,4-D amine controlled blue mustard ≥ 91% at 17 to 20 d after treatment (DAT) compared with ≤ 50% control with 2,4-D amine alone. At least 25 g ha−1of saflufenacil EC was necessary to control flixweed > 90%. Excluding COC from saflufenacil plus 2,4-D amine reduced flixweed control from the saflufenacil WG formulation more than the EC formulation. Most saflufenacil treatments did not control henbit satisfactorily (≤ 80%). Wheat foliar necrosis increased with increasing saflufenacil rate to as high as 30% at 3 to 6 DAT, but declined to < 15% at 10 to 20 DAT and was not evident at 30 DAT. Saflufenacil rate, formulation, and mixing with 2,4-D amine also influenced wheat stunting, but to a lesser extent than foliar necrosis. Saflufenacil EC consistently caused greater foliar necrosis and stunting on wheat than saflufenacil WG. Leaf necrosis and stunting were reduced by tank-mixing saflufenacil formulations with 2,4-D amine without COC. Grain yields of most saflufenacil treatments were similar to 2,4-D amine under weedy conditions and herbicide treatments had no effect on grain yield in weed-free experiments. Saflufenacil formulations at 25 to 50 g ha−1with 2,4-D amine and saflufenacil WG at 25 to 50 g ha−1with COC can control winter annual broadleaf weeds with minimal injury (< 15%) and no grain yield reductions. The addition of saflufenacil as a POST-applied herbicide would give wheat growers another useful tool to control annual broadleaf weeds, including herbicide-resistant weed species.


2021 ◽  
Vol 34 ◽  
pp. 04002
Author(s):  
Viktor Dolzhenko ◽  
Olga Kungurtseva ◽  
Maria Revkova ◽  
Yevgenia Yurchenko ◽  
Natalia Aleynikova

This research paper presents the findings concerning the effectiveness of utilizing Pergado Zoks water dispersible granule (WDG) and Zorvec Encantia suspo-emulsion (SE) fungicides to protect grapevines against downy mildew. It shows that double or triple treatment of vines provides strong protection of the plants against the disease without adversely affecting vegetative growth of the crop. It has been proven that effective protection of vines against downy mildew through the use of Pergado Zoks WDGs and Zorvec Encantia SE has allowed for ensuring high crop-saving rate (up to 140%) as compared to control.


2004 ◽  
Vol 18 (2) ◽  
pp. 397-403 ◽  
Author(s):  
Ageliki S. Hatzinikolaou ◽  
Ilias G. Eleftherohorinos ◽  
Ioannis B. Vasilakoglou

The activity of emulsifiable concentrate (EC) formulation of pendimethalin was studied using a petri dish bioassay based on root response of corn, oat, sorghum, and sugar beet grown in soil. Furthermore, the oat bioassay was used to determine the activity of EC, microencapsulated (ME), and water-dispersible granule (WDG) formulations of pendimethalin. Also, field persistence in soil of these pendimethalin formulations was studied with petri dish and pot bioassays, based on root response of oat and sugar beet. All bioassays indicated that activity of all pendimethalin formulations was increased with increasing herbicide concentration. In silty clay loam soil, oat and sugar beet exhibited the highest sensitivity to EC-pendimethalin concentrations and corn the lowest; sorghum showed intermediate herbicide sensitivity. EC of pendimethalin showed the highest activity on oat and ME pendimethalin the lowest; WDG-pendimethalin showed similar activity to that of ME pendimethalin. Field persistence was significantly increased with increasing rate of application, but it was slightly increased by the ME formulation.


Sign in / Sign up

Export Citation Format

Share Document