The Euclidean Algorithm and Simple Continued Fractions

1983 ◽  
Vol 76 (7) ◽  
pp. 510-548
Author(s):  
Clark Kimberling

Students can use microcomputers to cut through algorithms and computations to gain mathematical insights. This approach is especially true for the Euclidean algorithm, so often used to find the greatest common divisor (GCD) of two positive integers. The Euclidean algorithm also yields continued fractions, at least far enough for students to find patterns and discover truths about numbers.


2012 ◽  
Vol 08 (06) ◽  
pp. 1541-1556 ◽  
Author(s):  
E. N. ZHABITSKAYA

Every Euclidean algorithm is associated with a kind of continued fraction representation of a number. The representation associated with "odd" Euclidean algorithm we will call "odd" continued fraction. We consider the limit distribution function F(x) for sequences of rationals with bounded sum of partial quotients for "odd" continued fractions. In this paper we prove certain properties of the function F(x). Particularly this function is singular and satisfies a number of functional equations. We also show that the value F(x) can be expressed in terms of partial quotients of the "odd" continued fraction representation of a number x.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document