scholarly journals CONTINUED FRACTIONS WITH ODD PARTIAL QUOTIENTS

2012 ◽  
Vol 08 (06) ◽  
pp. 1541-1556 ◽  
Author(s):  
E. N. ZHABITSKAYA

Every Euclidean algorithm is associated with a kind of continued fraction representation of a number. The representation associated with "odd" Euclidean algorithm we will call "odd" continued fraction. We consider the limit distribution function F(x) for sequences of rationals with bounded sum of partial quotients for "odd" continued fractions. In this paper we prove certain properties of the function F(x). Particularly this function is singular and satisfies a number of functional equations. We also show that the value F(x) can be expressed in terms of partial quotients of the "odd" continued fraction representation of a number x.

1977 ◽  
Vol 14 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Harry Cohn

It is shown for a supercritical branching process with immigration that if the log moment of the immigration distribution is infinite, then no sequence of positive constants {cn} exists such that {Xn/cn} converges in law to a proper limit distribution function F, except for the case F(0 +) = 1. Seneta's result [1] combined with the above-mentioned one imply that if 1 < m < ∞ then the finiteness of the log moment of the immigration distribution is a necessary and sufficient condition for the existence of some constants {cn} such that {Xn/cn} converges in law to a proper limit distribution function F, with F(0 +) < 1.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


2002 ◽  
Vol 45 (3) ◽  
pp. 653-671 ◽  
Author(s):  
J. L. Davison

AbstractPrecise bounds are given for the quantity$$ L(\alpha)=\frac{\limsup_{m\rightarrow\infty}(1/m)\ln q_m}{\liminf_{m\rightarrow\infty}(1/m)\ln q_m}, $$where $(q_m)$ is the classical sequence of denominators of convergents to the continued fraction $\alpha=[0,u_1,u_2,\dots]$ and $(u_m)$ is assumed bounded, with a distribution.If the infinite word $\bm{u}=u_1u_2\dots$ has arbitrarily large instances of segment repetition at or near the beginning of the word, then we quantify this property by means of a number $\gamma$, called the segment-repetition factor.If $\alpha$ is not a quadratic irrational, then we produce a specific sequence of quadratic irrational approximations to $\alpha$, the rate of convergence given in terms of $L$ and $\gamma$. As an application, we demonstrate the transcendence of some continued fractions, a typical one being of the form $[0,u_1,u_2,\dots]$ with $u_m=1+\lfloor m\theta\rfloor\Mod n$, $n\geq2$, and $\theta$ an irrational number which satisfies any of a given set of conditions.AMS 2000 Mathematics subject classification: Primary 11A55. Secondary 11B37


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


1991 ◽  
Vol 34 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Arnold Knopfmacher

A study is made of the length L(h, k) of the continued fraction algorithm for h/k where h and k are co-prime polynomials in a finite field. In addition we investigate the sum of the degrees of the partial quotients in this expansion for h/k, h, k in . The above continued fraction is determined by means of the Euclidean algorithm for the polynomials h, k in .


1987 ◽  
Vol 30 (2) ◽  
pp. 295-299 ◽  
Author(s):  
M. J. Jamieson

The infinite continued fractionin whichis periodic with period l and is equal to a quadratic surd if and only if the partial quotients, ak, are integers or rational numbers [1]. We shall also assume that they are positive. The transformation discussed below applies only to pure periodic fractions where n is zero.


2001 ◽  
Vol 64 (2) ◽  
pp. 331-343 ◽  
Author(s):  
Alfred J. van der Poorten

Dedicated to George Szekeres on his 90th birthdayWe discuss the exponential growth in the height of the coefficients of the partial quotients of the continued fraction expansion of the square root of a generic polynomial.


1990 ◽  
Vol 41 (3) ◽  
pp. 509-512
Author(s):  
Jingcheng Tong

Let X = {xk}k≥1 be a sequence of positive integers. Let Qk = [O;xk,xk−1,…,x1] be the finite continued fraction with partial quotients xi(1 ≤ i ≤ k). Denote the set of the limit points of the sequence {Qk}k≥1 by Λ(X). In this note a necessary and sufficient condition is given for Λ(X) to contain no rational numbers other than zero.


Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


2018 ◽  
Vol 61 (1) ◽  
pp. 283-293
Author(s):  
Poj Lertchoosakul ◽  
Radhakrishnan Nair

AbstractLet 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by $$\alpha = A_0(\alpha ) + \displaystyle{1 \over {A_1(\alpha ) + \displaystyle{1 \over {A_2(\alpha ) + \ddots }}}},$$ where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾ 1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have $$\vert A_1(\alpha ) \ldots A_N(\alpha )\vert ^{1/N} = q^{q/(q - 1)} + o(N^{ - 1/2}(\log N)^{3/2 + {\rm \epsilon }})$$ for almost everywhere α with respect to Haar measure.


Sign in / Sign up

Export Citation Format

Share Document