scholarly journals Approximate Series Solution of Nonlinear, Fractional Klein-Gordon Equations Using Fractional Reduced Differential Transform Method

2016 ◽  
Vol 12 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Eman Abuteen ◽  
Asad Freihat ◽  
Mohammed Al-Smadi ◽  
Hammad Khalil ◽  
Rahmat Ali Khan
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wayinhareg Gashaw Belayeh ◽  
Yesuf Obsie Mussa ◽  
Ademe Kebede Gizaw

In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear Klein–Gordon equations (NLKGEs) with quadratic and cubic nonlinearities subject to appropriate initial conditions. The proposed technique has the advantage of producing an analytical approximation in a convergent power series form with a reduced number of calculable terms. Two test examples from mathematical physics are discussed to illustrate the validity and efficiency of the method. In addition, numerical solutions of the test examples are presented graphically to show the reliability and accuracy of the method. Also, the results indicate that the introduced method is promising for solving other type systems of NLPDEs.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 317-326 ◽  
Author(s):  
Hussin Che ◽  
Ahmad Ismail ◽  
Adem Kilicman ◽  
Amirah Azmi

This paper explores the approximate analytical solution of non-linear Klein-Gordon equations (NKGE) by using multistep modified reduced differential transform method (MMRDTM). Through this proposed strategy, the non-linear term is substituted by associating Adomian polynomials obtained by utilization of a multistep approach. The NKGE solutions can be obtained with a reduced number of computed terms. In addition, the approximate solutions converge rapidly in a wide time region. Three examples are provided to illustrate the effectiveness of the proposed method to obtain solutions for the NKGE. Graphical results are shown to represent the behavior of the solution so as to demonstrate the validity and accuracy of the MMRDTM.


Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Younghae Do ◽  
Bongsoo Jang

The differential transform method (DTM) is based on the Taylor series for all variables, but it differs from the traditional Taylor series in calculating coefficients. Even if the DTM is an effective numerical method for solving many nonlinear partial differential equations, there are also some difficulties due to the complex nonlinearity. To overcome difficulties arising in DTM, we present the new modified version of DTM, namely, the projected differential transform method (PDTM), for solving nonlinear partial differential equations. The proposed method is applied to solve the various nonlinear Klein-Gordon and Schrödinger equations. Numerical approximations performed by the PDTM are presented and compared with the results obtained by other numerical methods. The results reveal that PDTM is a simple and effective numerical algorithm.


2021 ◽  
Vol 5 (4) ◽  
pp. 168
Author(s):  
Salah Abuasad ◽  
Saleh Alshammari ◽  
Adil Al-rabtah ◽  
Ishak Hashim

In this study, exact and approximate solutions of higher-dimensional time-fractional diffusion equations were obtained using a relatively new method, the fractional reduced differential transform method (FRDTM). The exact solutions can be found with the benefit of a special function, and we applied Caputo fractional derivatives in this method. The numerical results and graphical representations specified that the proposed method is very effective for solving fractional diffusion equations in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document