scholarly journals WEIGHTED LIPSCHITZ CONTINUITY, SCHWARZ–PICK'S LEMMA AND LANDAU–BLOCH'S THEOREM FOR HYPERBOLIC-HARMONIC MAPPINGS IN ℂN

2013 ◽  
Vol 18 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Shaolin Chen ◽  
Saminathan Ponnusamy ◽  
Xiantao Wang

In this paper, we discuss some properties on hyperbolic-harmonic functions in the unit ball of ℂ n . First, we investigate the relationship between the weighted Lipschitz functions and the hyperbolic-harmonic Bloch spaces. Then we establish the Schwarz–Pick type theorem for hyperbolic-harmonic functions and apply it to prove the existence of Landau-Bloch constant for functions in α-Bloch spaces.

2011 ◽  
Vol 84 (1) ◽  
pp. 67-78 ◽  
Author(s):  
SH. CHEN ◽  
X. WANG

AbstractIn this paper, our main aim is to discuss the properties of harmonic mappings in the unit ball 𝔹n. First, we characterize the harmonic Bloch spaces and the little harmonic Bloch spaces from 𝔹n to ℂ in terms of weighted Lipschitz functions. Then we prove the existence of a Landau–Bloch constant for a class of vector-valued harmonic Bloch mappings from 𝔹n to ℂn.


2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


2017 ◽  
Vol 60 (1) ◽  
pp. 219-224 ◽  
Author(s):  
DAVID KALAJ

AbstractIn this note, we establish a Schwarz–Pick type inequality for holomorphic mappings between unit balls Bn and Bm in corresponding complex spaces. We also prove a Schwarz-Pick type inequality for pluri-harmonic functions.


2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Jiaolong Chen ◽  
David Kalaj

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).


Sign in / Sign up

Export Citation Format

Share Document