scholarly journals PICARD-REPRODUCING KERNEL HILBERT SPACE METHOD FOR SOLVING GENERALIZED SINGULAR NONLINEAR LANE-EMDEN TYPE EQUATIONS

2015 ◽  
Vol 20 (6) ◽  
pp. 754-767 ◽  
Author(s):  
Babak Azarnavid ◽  
Foroud Parvaneh ◽  
Saeid Abbasbandy

An iterative method is discussed with respect to its effectiveness and capability of solving singular nonlinear Lane-Emden type equations using reproducing kernel Hilbert space method combined with the Picard iteration. Some new error estimates for application of the method are established. We prove the convergence of the combined method. The numerical examples demonstrates a good agreement between numerical results and analytical predictions.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Banan Maayah ◽  
Samia Bushnaq ◽  
Shaher Momani ◽  
Omar Abu Arqub

A new algorithm called multistep reproducing kernel Hilbert space method is represented to solve nonlinear oscillator’s models. The proposed scheme is a modification of the reproducing kernel Hilbert space method, which will increase the intervals of convergence for the series solution. The numerical results demonstrate the validity and the applicability of the new technique. A very good agreement was found between the results obtained using the presented algorithm and the Runge-Kutta method, which shows that the multistep reproducing kernel Hilbert space method is very efficient and convenient for solving nonlinear oscillator’s models.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kılıçman

We investigate the effectiveness of reproducing kernel method (RKM) in solving partial differential equations. We propose a reproducing kernel method for solving the telegraph equation with initial and boundary conditions based on reproducing kernel theory. Its exact solution is represented in the form of a series in reproducing kernel Hilbert space. Some numerical examples are given in order to demonstrate the accuracy of this method. The results obtained from this method are compared with the exact solutions and other methods. Results of numerical examples show that this method is simple, effective, and easy to use.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yulan Wang ◽  
Shuai Lu ◽  
Fugui Tan ◽  
Mingjing Du ◽  
Hao Yu

We use the reproducing kernel Hilbert space method to solve the fifth-order boundary value problems. The exact solution to the fifth-order boundary value problems is obtained in reproducing kernel space. The approximate solution is given by using an iterative method and the finite section method. The present method reveals to be more effective and convenient compared with the other methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.


Sign in / Sign up

Export Citation Format

Share Document