fractional relaxation
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Akbar Zada

Abstract This manuscript is committed to deal with the existence and uniqueness of positive solutions for fractional relaxation equation involving ψ-Caputo fractional derivative. The existence of solution is carried out with the help of Schauder’s fixed point theorem, while the uniqueness of the solution is obtained by applying the Banach contraction principle, along with Bielecki type norm. Moreover, two explicit monotone iterative sequences are constructed for the approximation of the extreme positive solutions to the proposed problem. Lastly, two examples are presented to support the obtained results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Pongsakorn Sunthrayuth ◽  
Noufe H. Aljahdaly ◽  
Amjid Ali ◽  
Rasool Shah ◽  
Ibrahim Mahariq ◽  
...  

This paper proposes a numerical method for solving fractional relaxation-oscillation equations. A relaxation oscillator is a type of oscillator that is based on how a physical system returns to equilibrium after being disrupted. The primary equation of relaxation and oscillation processes is the relaxation-oscillation equation. The fractional derivatives in the relaxation-oscillation equations under consideration are defined in the Φ -Caputo sense. The numerical method relies on a novel type of operational matrix method, namely, the Φ -Haar wavelet operational matrix method. The operational matrix approach has a lower computational complexity. The proposed scheme simplifies the main problem to a set of linear algebraic equations. Numerical examples demonstrate the validity and applicability of the proposed technique.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
T. Kleiner ◽  
R. Hilfer

AbstractSolving fractional relaxation equations requires precisely characterized domains of definition for applications of fractional differential and integral operators. Determining these domains has been a longstanding problem. Applications in physics and engineering typically require extension from domains of functions to domains of distributions. In this work convolution modules are constructed for given sets of distributions that generate distributional convolution algebras. Convolutional inversion of fractional equations leads to a broad class of multinomial Mittag-Leffler type distributions. A comprehensive asymptotic analysis of these is carried out. Combined with the module construction the asymptotic analysis yields domains of distributions, that guarantee existence and uniqueness of solutions to fractional differential equations. The mathematical results are applied to anomalous dielectric relaxation in glasses. An analytic expression for the frequency dependent dielectric susceptibility is applied to broadband spectra of glycerol. This application reveals a temperature independent and universal dynamical scaling exponent.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Azhar Ali Zafar ◽  
Jan Awrejcewicz ◽  
Olga Mazur ◽  
Muhammad Bilal Riaz

AbstractOur aim in this article is to solve the composite fractional relaxation differential equation by using different definitions of the non-integer order derivative operator $D_{t}^{\alpha }$ D t α , more specifically we employ the definitions of Caputo, Caputo–Fabrizio and Atangana–Baleanu of non-integer order derivative operators. We apply the Laplace transform method to solve the problem and express our solutions in terms of Lorenzo and Hartley’s generalised G function. Furthermore, the effects of the parameters involved in the model are graphically highlighted.


2021 ◽  
Vol 6 (3) ◽  
pp. 2486-2509
Author(s):  
Choukri Derbazi ◽  
◽  
Zidane Baitiche ◽  
Mohammed S. Abdo ◽  
Thabet Abdeljawad ◽  
...  

2020 ◽  
Vol 23 (5) ◽  
pp. 1248-1273
Author(s):  
Luisa Beghin ◽  
Janusz Gajda

Abstract Fractional relaxation equations, as well as relaxation functions time-changed by independent stochastic processes have been widely studied (see, for example, [21], [33] and [11]). We start here by proving that the upper-incomplete Gamma function satisfies the tempered-relaxation equation (of index ρ ∈ (0, 1)); thanks to this explicit form of the solution, we can then derive its spectral distribution, which extends the stable law. Accordingly, we define a new class of selfsimilar processes (by means of the n-times Laplace transform of its density) which is indexed by the parameter ρ: in the special case where ρ = 1, it reduces to the stable subordinator. Therefore the parameter ρ can be seen as a measure of the local deviation from the temporal dependence structure displayed in the standard stable case.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1561 ◽  
Author(s):  
Yuri Luchko

In this paper, we first deduce the explicit formulas for the projector of the nth level fractional derivative and for its Laplace transform. Afterwards, the fractional relaxation equation with the nth level fractional derivative is discussed. It turns out that, under some conditions, the solutions to the initial-value problems for this equation are completely monotone functions that can be represented in form of the linear combinations of the Mittag–Leffler functions with some power law weights. Special attention is given to the case of the relaxation equation with the second level derivative.


In this tutorial survey we recall the basic properties of the special function of the Mittag-Leffler and Wright type that are known to be relevant in processes dealt with the fractional calculus. We outline the major applications of these functions. For the Mittag-Leffler functions we analyze the Abel integral equation of the second kind and the fractional relaxation and oscillation phenomena. For the Wright functions we distinguish them in two kinds. We mainly stress the relevance of the Wright functions of the second kind in probability theory with particular regard to the so-called M-Wright functions that generalizes the Gaussian and is related with the time-fractional diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document