scholarly journals AN EXTENSION OF THE RATIO SYSTEM APPROACH OF MOORA METHOD FOR GROUP DECISION-MAKING BASED ON INTERVAL-VALUED TRIANGULAR FUZZY NUMBERS

2015 ◽  
Vol 22 (1) ◽  
pp. 122-141 ◽  
Author(s):  
Dragisa STANUJKIC

Decision-making in fuzzy environment is often a very complex, especially when related to predictions and assessments. The Ratio system approach of the MOORA method and Intervalvalued fuzzy numbers have already proved themselves as the effective tools for solving complex decision-making problems. Therefore, in this paper an extension of the Ratio system approach of the MOORA method, which allows a group decision-making as well as the use of interval-valued triangular fuzzy numbers, is proposed. Interval-fuzzy numbers are rather complex, and therefore, they are not practical for direct assigning performance ratings. For this reason, in this paper it has also been suggested the approach which allows the expression of individual performance ratings using crisp, interval or fuzzy numbers, and their further transformation into the group performance ratings, expressed in the form of interval-valued triangular fuzzy numbers, which provide greater flexibility and reality compared to the use of linguistic variables. Finally, in this paper the weighted averaging operator was proposed for defuzzification of interval-valued triangular fuzzy numbers.

Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 260 ◽  
Author(s):  
Hua Zhuang

This paper aims to propose an innovative approach to group decision making (GDM) with interval-valued intuitionistic fuzzy (IVIF) preference relations (IVIFPRs). First, an IVIFPR is proposed based on the additive consistency of an interval-valued fuzzy preference relation (IVFPR). Then, two mathematical or adjusted programming models are established to extract two special consistent IVFPRs. In order to derive the priority weight of an IVIFPR, after taking the two special IVFPRs into consideration, a linear optimization model is constructed by minimizing the deviations between individual judgments and between the width degrees of the interval priority weights. For GDM with IVIFPRs, the decision makers’ weights are generated by combining the adjusted subjective weights with the objective weights. Subsequently, using an IVIF-weighted averaging operator, the collective IVIFPR is obtained and utilized to derive the IVIF priority weights. Finally, a practical example of a supplier selection is analyzed to demonstrate the application of the proposed method.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 182
Author(s):  
Hua Zhuang ◽  
Yanzhao Tang ◽  
Meijuan Li

Group decision making with intuitionistic fuzzy preference information contains two key issues: acceptability measurement and priority weight determination. In this paper, we investigate the above two issues with respect to multiplicative interval-valued intuitionistic fuzzy preference relation (IVIFPR). Firstly, a consistency index is defined to measure the multiplicative consistency degree of IVIFPR and an optimization model is established to improve the consistency degree of IVIFPR to an acceptable one. Next, in terms of priority weight determination, an error-analysis-based extension method is proposed to obtain priority weight vector from the acceptable IVIFPR. For GDM problems, decision makers’ weights are derived by the proposed multiplicative consistency index. Subsequently, the collective IVIFPR is obtained by using an interval-valued intuitionistic fuzzy (IVIF) weighted averaging operator. Finally, a step-by step algorithm for GDM with IVIFPRs is given, and an example of enterprise innovation partner selection is analyzed, and comparative analyses with existing approaches are performed to demonstrate that the proposed algorithm is both effective and practical in dealing with GDM problems.


2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 180 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Madad Khan ◽  
Florentin Smarandache

In this paper, a new concept of the triangular neutrosophic cubic fuzzy numbers (TNCFNs), their score and accuracy functions are introduced. Based on TNCFNs, some new Einstein aggregation operators, such as the triangular neutrosophic cubic fuzzy Einstein weighted averaging (TNCFEWA), triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging (TNCFEOWA) and triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging (TNCFEHWA) operators are developed. Furthermore, their application to multiple-attribute decision-making with triangular neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a practical example is given to verify the developed approach and to demonstrate its practicality and effectiveness.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Tiejun Li ◽  
Jianhua Jin ◽  
Chunquan Li

Multicriteria group decision making (MCGDM) research has rapidly been developed and become a hot topic for solving complex decision problems. Because of incomplete or non-obtainable information, the refractured well-selection problem often exists in complex and vague conditions that the relative importance of the criteria and the impacts of the alternatives on these criteria are difficult to determine precisely. This paper presents a new model for MCGDM by integrating fuzzy analytic hierarchy process (AHP) with fuzzy TOPSIS based on interval-typed fuzzy numbers, to help group decision makers for well-selection during refracturing treatment. The fuzzy AHP is used to analyze the structure of the selection problem and to determine weights of the criteria with triangular fuzzy numbers, and fuzzy TOPSIS with interval-typed triangular fuzzy numbers is proposed to determine final ranking for all the alternatives. Furthermore, the algorithm allows finding the best alternatives. The feasibility of the proposed methodology is also demonstrated by the application of refractured well-selection problem and the method will provide a more effective decision-making tool for MCGDM problems.


Author(s):  
SHOUZHEN ZENG ◽  
WEI LI ◽  
JOSÉ M. MERIGÓ

The induced ordered weighted averaging distance (IOWAD) approach is very suitable in situations in which the available information is represented with exact numerical values. In this paper, we develop some extended IOWAD operators: the linguistic induced ordered weighted averaging distance (LIOWAD) operator, the uncertain induced ordered weighted averaging distance (UIOWAD) operator and the fuzzy induced ordered weighted averaging distance (FIOWAD) operator. Their main objective is to assess uncertain situations in which the available information is given in the form of linguistic variables, interval numbers and fuzzy numbers. Some special cases of these three new extensions are studied. Finally, we develop an application of the new operators in a group decision-making problem under an uncertain environment and illustrate it with a numerical example.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Liu ◽  
Ning Zhou ◽  
Li-Hua Zhuang ◽  
Ning Li ◽  
Fei-Fei Jin

Under the interval-valued hesitant fuzzy information environment, we investigate a multiattribute group decision making (MAGDM) method with continuous entropy weights and improved Hamacher information aggregation operators. Firstly, we introduce the axiomatic definition of entropy for interval-valued hesitant fuzzy elements (IVHFEs) and construct a continuous entropy formula on the basis of the continuous ordered weighted averaging (COWA) operator. Then, based on the Hamachert-norm andt-conorm, the adjusted operational laws for IVHFEs are defined. In order to aggregate interval-valued hesitant fuzzy information, some new improved interval-valued hesitant fuzzy Hamacher aggregation operators are investigated, including the improved interval-valued hesitant fuzzy Hamacher ordered weighted averaging (I-IVHFHOWA) operator and the improved interval-valued hesitant fuzzy Hamacher ordered weighted geometric (I-IVHFHOWG) operator, the desirable properties of which are discussed. In addition, the relationship among these proposed operators is analyzed in detail. Applying the continuous entropy and the proposed operators, an approach to MAGDM is developed. Finally, a numerical example for emergency operating center (EOC) selection is provided, and comparative analyses with existing methods are performed to demonstrate that the proposed approach is both valid and practical to deal with group decision making problems.


2021 ◽  
Author(s):  
khaista Rahman

Abstract In this paper, a logarithmic operational law for intuitionistic fuzzy numbers is defined, in which the based1 is a real number such that1 ∈(0,1) with condition1 ≠ 1. Some properties of logarithmic operational laws have been studied and based on these, several Einstein averaging and Einstein geometric operators namely, logarithmic intuitionistic fuzzy Einstein weighted averaging (LIFEWA) operator, logarithmic intuitionistic fuzzy Einstein ordered weighted averaging (LIFEOWA) operator, logarithmic intuitionistic fuzzy Einstein hybrid averaging (LIFEHA) operator, logarithmic intuitionistic fuzzy Einstein weighted geometric (LIFEWG) operator, logarithmic intuitionistic fuzzy Einstein ordered weighted geometric (LIFEOWG) operator, and logarithmic intuitionistic fuzzy Einstein hybrid geometric (LIFEHG) operator have been introduced, which can overcome the weaknesses of algebraic operators. Furthermore, based on the proposed operators a multi-attribute group decision-making problem is established under logarithmic operational laws. Finally, an illustrative example is used to illustrate the applicability and validity of the proposed approach and compare the results with the existing methods to show the effectiveness of it.


Sign in / Sign up

Export Citation Format

Share Document