scholarly journals Interval-Valued Hesitant Fuzzy Multiattribute Group Decision Making Based on Improved Hamacher Aggregation Operators and Continuous Entropy

2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Liu ◽  
Ning Zhou ◽  
Li-Hua Zhuang ◽  
Ning Li ◽  
Fei-Fei Jin

Under the interval-valued hesitant fuzzy information environment, we investigate a multiattribute group decision making (MAGDM) method with continuous entropy weights and improved Hamacher information aggregation operators. Firstly, we introduce the axiomatic definition of entropy for interval-valued hesitant fuzzy elements (IVHFEs) and construct a continuous entropy formula on the basis of the continuous ordered weighted averaging (COWA) operator. Then, based on the Hamachert-norm andt-conorm, the adjusted operational laws for IVHFEs are defined. In order to aggregate interval-valued hesitant fuzzy information, some new improved interval-valued hesitant fuzzy Hamacher aggregation operators are investigated, including the improved interval-valued hesitant fuzzy Hamacher ordered weighted averaging (I-IVHFHOWA) operator and the improved interval-valued hesitant fuzzy Hamacher ordered weighted geometric (I-IVHFHOWG) operator, the desirable properties of which are discussed. In addition, the relationship among these proposed operators is analyzed in detail. Applying the continuous entropy and the proposed operators, an approach to MAGDM is developed. Finally, a numerical example for emergency operating center (EOC) selection is provided, and comparative analyses with existing methods are performed to demonstrate that the proposed approach is both valid and practical to deal with group decision making problems.

2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 658 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Florentin Smarandache ◽  
Madad Khan ◽  
Nasruddin Hassan

In this paper, triangular cubic hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy Einstein hybrid weighted averaging (TCHFEHWA) operator are proposed. An approach to multiple attribute group decision making with linguistic information is developed based on the TCHFEWA and the TCHFEHWA operators. Furthermore, we establish various properties of these operators and derive the relationship between the proposed operators and the existing aggregation operators. Finally, a numerical example is provided to demonstrate the application of the established approach.


Author(s):  
LIGANG ZHOU ◽  
ZHIFU TAO ◽  
HUAYOU CHEN ◽  
JINPEI LIU

We develop some new cases of the induced continuous ordered weighted averaging (ICOWA) operator and study their desirable properties, which are very suitable to deal with group decision making (GDM) with interval fuzzy preference relations. First, we present the consensus indicator ICOWA (CI-ICOWA) operator which uses the consensus indicator of the interval fuzzy preference as the order inducing variable in the ICOWA operator. Then the concept of compatibility degree (CD) for two interval fuzzy preference relations is defined based on the continuous ordered weighted averaging (COWA) operator and the compatibility degree ICOWA (CD-ICOWA) operator is proposed which uses the CD as the order inducing variable in the ICOWA operator. Next, we investigate some desirable properties of the CD-ICOWA operator. Additionally, we construct an optimization model to obtain the weights of experts by minimizing the compatibility degree in the GDM. Finally, an illustrative numerical example is used to verify the developed approaches.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Jie Wang ◽  
Hui Gao ◽  
Guiwu Wei ◽  
Yu Wei

In the practical world, there commonly exist different types of multiple-attribute group decision making (MAGDM) problems with uncertain information. Symmetry among some attributes’ information that is already known and unknown, and symmetry between the pure attribute sets and fuzzy attribute membership sets, can be an effective way to solve this type of MAGDM problem. In this paper, we investigate four forms of information aggregation operators, including the Hamy mean (HM) operator, weighted HM (WHM) operator, dual HM (DHM) operator, and the dual-weighted HM (WDHM) operator with the q-rung interval-valued orthopair fuzzy numbers (q-RIVOFNs). Then, some extended aggregation operators, such as the q-rung interval-valued orthopair fuzzy Hamy mean (q-RIVOFHM) operator; q-rung interval-valued orthopairfuzzy weighted Hamy mean (q-RIVOFWHM) operator; q-rung interval-valued orthopair fuzzy dual Hamy mean (q-RIVOFDHM) operator; and q-rung interval-valued orthopair fuzzy weighted dual Hamy mean (q-RIVOFWDHM) operator are presented, and some of their precious properties are studied in detail. Finally, a real example for green supplier selection in green supply chain management is provided, to demonstrate the proposed approach and to verify its rationality and scientific nature.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 180 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Madad Khan ◽  
Florentin Smarandache

In this paper, a new concept of the triangular neutrosophic cubic fuzzy numbers (TNCFNs), their score and accuracy functions are introduced. Based on TNCFNs, some new Einstein aggregation operators, such as the triangular neutrosophic cubic fuzzy Einstein weighted averaging (TNCFEWA), triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging (TNCFEOWA) and triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging (TNCFEHWA) operators are developed. Furthermore, their application to multiple-attribute decision-making with triangular neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a practical example is given to verify the developed approach and to demonstrate its practicality and effectiveness.


Algorithms ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 120 ◽  
Author(s):  
Wenying Wu ◽  
Ying Li ◽  
Zhiwei Ni ◽  
Feifei Jin ◽  
Xuhui Zhu

Based on the probabilistic interval-valued hesitant fuzzy information aggregation operators, this paper investigates a novel multi-attribute group decision making (MAGDM) model to address the serious loss of information in a hesitant fuzzy information environment. Firstly, the definition of probabilistic interval-valued hesitant fuzzy set will be introduced, and then, using Archimedean norm, some new probabilistic interval-valued hesitant fuzzy operations are defined. Secondly, based on these operations, the generalized probabilistic interval-valued hesitant fuzzy ordered weighted averaging (GPIVHFOWA) operator, and the generalized probabilistic interval-valued hesitant fuzzy ordered weighted geometric (GPIVHFOWG) operator are proposed, and their desirable properties are discussed. We further study their common forms and analyze the relationship among these proposed operators. Finally, a new probabilistic interval-valued hesitant fuzzy MAGDM model is constructed, and the feasibility and effectiveness of the proposed model are verified by using an example of supplier selection.


2014 ◽  
Vol 20 (4) ◽  
pp. 648-672 ◽  
Author(s):  
Wei Zhou ◽  
Jian Min He

An important research topic related to the theory and application of the interval-valued intuitionistic fuzzy weighted aggregation operators is how to determine their associated weights. In this paper, we propose a precise weight-determined (PWD) method of the monotonicity and scale-invariance, just based on the new score and accuracy functions of interval-valued intuitionistic fuzzy number (IIFN). Since the monotonicity and scale-invariance, the PWD method may be a precise and objective approach to calculate the weights of IIFN and interval-valued intuitionistic fuzzy aggregation operator, and a more suitable approach to distinguish different decision makers (DMs) and experts in group decision making. Based on the PWD method, we develop two new interval-valued intuitionistic fuzzy aggregation operators, i.e. interval-valued intuitionistic fuzzy ordered precise weighted averaging (IIFOPWA) operator and interval-valued intuitionistic fuzzy ordered precise weighted geometric (IIFOPWG) operator, and study their desirable properties in detail. Finally, we provide an illustrative example.


2019 ◽  
Vol 8 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Qiyas ◽  
Saleem Abdullah ◽  
Shahzaib Ashraf

The aim of this paper is applying the linguistic term and linguistic variables to picture fuzzy information. In this article the multiple attribute group decision making is considered. First we develop the picture linguistic averaging aggregation operators based on new operation on picture fuzzy information. For the (MCGDM) problems with picture linguistic information, we define a score index and accuracy index of (PLNs), and prefer a technique to the correlation among the two (PLNs). Simultaneously, some operation laws for (PLNs) are defined and the related properties are studied. Further, some aggregation operators are developed: picture linguistic weighted averaging (PLWA), picture linguistic ordered weighted averaging (PLOWA), picture linguistic hybrid averaging (PLHA) operators


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 698 ◽  
Author(s):  
Muhammad Jamil ◽  
Saleem Abdullah ◽  
Muhammad Yaqub Khan ◽  
Florentin Smarandache ◽  
Fazal Ghani

The present study aims to introduce the notion of bipolar neutrosophic Hamacher aggregation operators and to also provide its application in real life. Then neutrosophic set (NS) can elaborate the incomplete, inconsistent, and indeterminate information, Hamacher aggregation operators, and extended Einstein aggregation operators to the arithmetic and geometric aggregation operators. First, we give the fundamental definition and operations of the neutrosophic set and the bipolar neutrosophic set. Our main focus is on the Hamacher aggregation operators of bipolar neutrosophic, namely, bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar neutrosophic Hamacher ordered weighted averaging (BNHOWA), and bipolar neutrosophic Hamacher hybrid averaging (BNHHA) along with their desirable properties. The prime gain of utilizing the suggested methods is that these operators progressively provide total perspective on the issue necessary for the decision makers. These tools provide generalized, increasingly exact, and precise outcomes when compared to the current methods. Finally, as an application, we propose new methods for the multi-criteria group decision-making issues by using the various kinds of bipolar neutrosophic operators with a numerical model. This demonstrates the usefulness and practicality of this proposed approach in real life.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1053
Author(s):  
Kifayat Ullah ◽  
Harish Garg ◽  
Zunaira Gul ◽  
Tahir Mahmood ◽  
Qaisar Khan ◽  
...  

Multi-attribute decision-making (MADM) is commonly used to investigate fuzzy information effectively. However, selecting the best alternative information is not always symmetric because the alternatives do not have complete information, so asymmetric information is often involved. Expressing the information under uncertainty using closed subintervals of [0, 1] is beneficial and effective instead of using crisp numbers from [0, 1]. The goal of this paper is to enhance the notion of Dombi aggregation operators (DAOs) by introducing the DAOs in the interval-valued T-spherical fuzzy (IVTSF) environment where the uncertain and ambiguous information is described with the help of membership grade (MG), abstinence grade (AG), non-membership grade (NMG), and refusal grade (RG) using closed sub-intervals of [0, 1]. One of the key benefits of the proposed work is that in the environment of information loss is reduced to a negligible limit. We proposed concepts of IVTSF Dombi weighted averaging (IVTSFDWA) and IVTSF Dombi weighted geometric (IVTSFDWG) operators. The diversity of the IVTSF DAOs is proved and the influences of the parameters, associated with DAOs, on the ranking results are observed in a MADM problem where it is discussed how a decision can be made when there is asymmetric information about alternatives.


Sign in / Sign up

Export Citation Format

Share Document