scholarly journals PROFIT DISTRIBUTION IN IPD PROJECTS BASED ON WEIGHT FUZZY COOPERATIVE GAMES

2021 ◽  
Vol 0 (0) ◽  
pp. 1-13
Author(s):  
Shuwen Guo ◽  
Junwu Wang

Integrated Project Delivery (IPD) is regarded as an effective project delivery method that can deal with the challenge of the rapid development of the architecture, engineering, and construction (AEC) industry. In the IPD team, the alliance profit is not distributed fairly and effectively due to uncertainty, preventing the achievement of the IPD project goals. This study focuses on optimizing the profit distribution among stakeholders in IPD projects and uses quadratic programming models to solve fuzzy cooperative games in the IPD. A payoff function is used in the fuzzy alliance to determine the characteristics of the interval-valued fuzzy numbers, and different weights of the alliance and the efficiency of the player’s participation in the IPD are considered in the profit distribution. A case study is conducted, and the results of the proposed method are compared with those of crisp cooperative games. The results show that the fuzzy cooperative game increases the profit of participants in IPD projects. It is more practical to use weight fuzzy cooperative games than crisp games to express imputation. Moreover, the quadratic programming models and methods result in a fair and efficient profit distribution scheme in IPD projects.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jia-Cai Liu ◽  
Yuan-Fei Zhu ◽  
Wen-Jian Zhao

A quadratic programming model is constructed for solving the fuzzy cooperative games with coalition values expressed by triangular fuzzy numbers, which will be abbreviated to TFN-typed cooperative games from now on. Based on the concept of α-cut set and the representation theorem for the fuzzy set, the least square distance solution for solving TFN-typed cooperative games is proposed. The least square distance solution successfully avoids the subtraction operation of TFNs, which may inevitably lead to the amplification of uncertainty and the distortion of decision information. A calculating example related to the profit distribution of logistics coalition is illustrated to show the advantages, validity, and applicability of the proposed method. Besides, the least square distance solution for solving TFN-typed cooperative games satisfies many important properties of cooperative games, such as uniqueness, additivity, symmetry, and uniqueness.


Sign in / Sign up

Export Citation Format

Share Document