scholarly journals DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

2016 ◽  
Vol 818 (2) ◽  
pp. 159 ◽  
Author(s):  
Maryam Tabeshian ◽  
Paul A. Wiegert
2010 ◽  
Vol 6 (S276) ◽  
pp. 300-303 ◽  
Author(s):  
Alexander J. Mustill ◽  
Mark C. Wyatt

AbstractMean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. The Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or similar missions. Full details can be found in Mustill & Wyatt (2011).


2019 ◽  
Vol 15 (S350) ◽  
pp. 451-453
Author(s):  
G. Apostolovska ◽  
E. Vchkova Bebekovska ◽  
A. Kostov ◽  
Z. Donchev

AbstractAs a result of collisions during their lifetimes, asteroids have a large variety of different shapes. It is believed that high velocity collisions or rotational spin-up of asteroids continuously replenish the Sun’s zodiacal cloud and debris disks around extrasolar planets (Jewitt (2010)). Knowledge of the spin and shape parameters of the asteroids is very important for understanding collision asteroid processes. Lately photometric observations of asteroids showed that variations in brightness are not accompanied by variations in colour index which indicate that the shape of the lightcurve is caused by varying illuminations of the asteroid surface rather than albedo variations over the surface. This conclusion became possible when photometric investigations were combined with laboratory experiments (Dunlap (1971)). In this article using the convex lightcurve inversion method we obtained the sense of rotation, pole solutions and preliminary shape of 901 Brunsia.


2009 ◽  
Vol 103 (4) ◽  
pp. 343-364 ◽  
Author(s):  
Pavol Pástor ◽  
Jozef Klačka ◽  
Ladislav Kómar

2018 ◽  
pp. 2693-2711
Author(s):  
Alexandre C. M. Correia ◽  
Jean-Baptiste Delisle ◽  
Jacques Laskar

1992 ◽  
Vol 152 ◽  
pp. 255-268 ◽  
Author(s):  
A. Carusi ◽  
G.B. Valsecchi

The gravitational processes affecting the dynamics of comets are reviewed. At great distances from the Sun the motion of comets is primarily affected by the vertical component of the galactic field, as well as by encounters with stars and giant molecular clouds. When comets move in the region of the planets, encounters with these can strongly affect their motion. A good fraction of all periodic comets spend some time in temporary libration about mean motion resonances with Jupiter; some comets can be captured by this planet as temporary satellites. Finally, there is a small number of objects with orbital characteristics quite different from those of all other short-period comets.


Sign in / Sign up

Export Citation Format

Share Document