zodiacal cloud
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2 (5) ◽  
pp. 185 ◽  
Author(s):  
J. R. Szalay ◽  
P. Pokorný ◽  
D. M. Malaspina ◽  
A. Pusack ◽  
S. D. Bale ◽  
...  


2021 ◽  
Author(s):  
Jessica Rigley ◽  
Mark Wyatt

<p>Models of the thermal emission of the zodiacal cloud and sporadic meteoroids suggest that the dominant source of interplanetary dust is Jupiter-family comets (JFCs). However, comet sublimation is insufficient to sustain the quantity of dust presently in the inner solar system. It has therefore been suggested that spontaneous disruptions of JFCs may supply the zodiacal cloud.</p> <p>We present a model for the dust produced in comet fragmentations and its evolution, comparing with the present day zodiacal cloud. Using results from dynamical simulations we follow individual JFCs as they evolve and undergo recurrent splitting events. The dust produced by these events is followed with a kinetic model which takes into account the effects of collisional evolution, Poynting-Robertson drag, and radiation pressure. This allows us to model both the size distribution and radial profile of dust resulting from comet fragmentation. Our model suggests that JFC fragmentations can produce enough dust to sustain the zodiacal cloud. We also discuss the feasibility of comet fragmentation producing the spatial and size distribution of dust seen in the zodiacal cloud.</p> <p>By modelling individual comets we are also able to explore the variability of cometary input to the zodiacal cloud. Comets are drawn from a size distribution based on the Kuiper belt and fragment randomly. We show that large comets should be scattered into the inner solar system stochastically, leading to large variations in the historical brightness of the zodiacal light.</p>



2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Andrew Poppe ◽  
J. R. Szalay ◽  
C. M. Lisse ◽  
M. Horányi ◽  
M. Zemcov ◽  
...  


2020 ◽  
Vol 4 (10) ◽  
pp. 940-946 ◽  
Author(s):  
David E. Trilling ◽  
Carey Lisse ◽  
Dale P. Cruikshank ◽  
Joshua P. Emery ◽  
Yanga Fernández ◽  
...  
Keyword(s):  


Author(s):  
George J. Flynn

Scattered sunlight from interplanetary dust particles, mostly produced by comets and asteroids, orbiting the Sun are visible at dusk or dawn as the Zodiacal Cloud. Impacts onto the space-exposed surfaces of Earth-orbiting satellites indicate that, in the current era, thousands of tons of interplanetary dust enters the Earth’s atmosphere every year. Some particles vaporize forming meteors while others survive atmospheric deceleration and settle to the surface of the Earth. NASA has collected interplanetary dust particles from the Earth’s stratosphere using high-altitude aircraft since the mid-1970s. Detailed characterization of these particles shows that some are unique samples of Solar System and presolar material, never affected by the aqueous and thermal processing that overprints the record of formation from the Solar Protoplanetary Disk in the meteorites. These particles preserve the record of grain and dust formation from the disk. This record suggests that many of the crystalline minerals, dominated by crystalline silicates (olivine and pyroxene) and Fe-sulfides, condensed from gas in the inner Solar System and were then transported outward to the colder outer Solar System where carbon-bearing ices condensed on the surfaces of the grains. Irradiation by solar ultraviolet light and cosmic rays produced thin organic coatings on the grain surfaces that likely aided in grain sticking, forming the first dust particles of the Solar System. This continuous, planet-wide rain of interplanetary dust particles can be monitored by the accumulation of 3He, implanted into the interplanetary dust particles by the Solar Wind while they were in space, in oceanic sediments. The interplanetary dust, which is rich in organic carbon, may have contributed important pre-biotic organic matter important to the development of life to the surface of the early Earth.



2020 ◽  
Author(s):  
Jamey Szalay ◽  
Petr Pokorny ◽  
Mihaly Horanyi ◽  
Stuart Bale ◽  
Eric Christian ◽  
...  

<p>The zodiacal cloud in the inner solar system undergoes continual evolution, as its dust grains are collisionally ground and sublimated into smaller and smaller sizes. Sufficiently small (~<500 nm) grains known as beta-meteoroids are ejected from the inner solar system on hyperbolic orbits under the influence of solar radiation pressure. These small grains can reach significantly larger speeds than those in the nominal zodiacal cloud and impact the surfaces of airless bodies. Since the discovery of the Moon's asymmetric ejecta cloud, the origin of its sunward-canted density enhancement has not been well understood. We propose impact ejecta from beta-meteoroids that hit the Moon's sunward side could explain this unresolved asymmetry. The proposed hypothesis rests on the fact that beta-meteoroids are one of the few truly asymmetric meteoroid sources in the solar system, as unbound grains always travel away from the Sun and lack a symmetric inbound counterpart. This finding suggests beta-meteoroids may also contribute to the evolution of other airless surfaces in the inner solar system as well as within other exo-zodiacal disks. We will also highlight recent observations from the Parker Solar Probe (PSP) spacecraft, which suggest it is being bombarded by the very same beta-meteoroids. We discuss how observations by PSP, which lacks a dedicated dust detector, can be used to inform the structure and variability of beta-meteoroids in the inner solar system closer to the Sun than ever before.</p>



2019 ◽  
Vol 630 ◽  
pp. A20 ◽  
Author(s):  
A. C. Levasseur-Regourd ◽  
J.-B. Renard ◽  
E. Hadamcik ◽  
J. Lasue ◽  
I. Bertini ◽  
...  

Context. The dust-brightness phase curves that have been measured by the OSIRIS cameras on board the Rosetta spacecraft within the coma of comet 67P/Churyumov-Gerasimenko (67P) present a remarkable flattened u-shape. Aims. Our goal is to compare these phase curves with those of tentatively analog dust samples to assess the key dust properties that might induce this shape. Methods. Light-scattering measurements have been made with the PROGRA2 instrument in the laboratory and in microgravity conditions on samples of different physical properties and compositions that are likely to be representative of cometary dust particles. Results. We find that the brightness phase curves of a series of interplanetary dust analogs that have been recently developed (to fit the polarimetric properties of the inner zodiacal cloud and their changes with heliocentric distance) are quite comparable to those of 67P. Key dust properties seem to be related to the composition and the porosity. Conclusions. We conclude that the shape of the brightness phase curves of 67P has to be related to the presence of a significant amount of organic compounds (at least 50% in mass) and of fluffy aggregates (of a size range of 10–200 μm). We also confirm similarities between the dust particles of this Jupiter-family comet and the particles within the inner zodiacal cloud.



2019 ◽  
Vol 15 (S350) ◽  
pp. 451-453
Author(s):  
G. Apostolovska ◽  
E. Vchkova Bebekovska ◽  
A. Kostov ◽  
Z. Donchev

AbstractAs a result of collisions during their lifetimes, asteroids have a large variety of different shapes. It is believed that high velocity collisions or rotational spin-up of asteroids continuously replenish the Sun’s zodiacal cloud and debris disks around extrasolar planets (Jewitt (2010)). Knowledge of the spin and shape parameters of the asteroids is very important for understanding collision asteroid processes. Lately photometric observations of asteroids showed that variations in brightness are not accompanied by variations in colour index which indicate that the shape of the lightcurve is caused by varying illuminations of the asteroid surface rather than albedo variations over the surface. This conclusion became possible when photometric investigations were combined with laboratory experiments (Dunlap (1971)). In this article using the convex lightcurve inversion method we obtained the sense of rotation, pole solutions and preliminary shape of 901 Brunsia.



2015 ◽  
Vol 11 (T29A) ◽  
pp. 365-379 ◽  
Author(s):  
Peter Jenniskens ◽  
Jiří Borovička ◽  
Jun-ichi Watanabe ◽  
Tadeusz Jopek ◽  
Shinsuke Abe ◽  
...  

Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the “vermin of space”, the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.





Sign in / Sign up

Export Citation Format

Share Document