scholarly journals Detection and Characterization of Extrasolar Planets through Mean-motion Resonances. II. The Effect of the Planet’s Orbital Eccentricity on Debris Disk Structures

2017 ◽  
Vol 847 (1) ◽  
pp. 24 ◽  
Author(s):  
Maryam Tabeshian ◽  
Paul A. Wiegert
2010 ◽  
Vol 6 (S276) ◽  
pp. 300-303 ◽  
Author(s):  
Alexander J. Mustill ◽  
Mark C. Wyatt

AbstractMean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. The Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or similar missions. Full details can be found in Mustill & Wyatt (2011).


2016 ◽  
pp. 19-26 ◽  
Author(s):  
I. Milic-Zitnik

Recently, we analyzed the role of mean-motion resonances in semi-major axis mobility of asteroids, and established a functional relationship that describes the dependence of the average time spent inside the resonance on the strength of this resonance and the semi-major axis drift speed. Here we extend this analyzis in two directions. First, we study the distribution of time delays inside the resonance and found that it could be described by the modified Laplace asymmetric distribution. Second, we analyze how the time spent inside the resonance depends on orbital eccentricity, and propose a relation that allows to take into account this parameter as well.


2019 ◽  
Vol 486 (3) ◽  
pp. 3874-3885 ◽  
Author(s):  
Daniel Carrera ◽  
Eric B Ford ◽  
Andre Izidoro

ABSTRACT Protoplanetary discs are thought to be truncated at orbital periods of around 10 d. Therefore, the origin of rocky short-period planets with P < 10 d is a puzzle. We propose that many of these planets may form through the Type-I migration of planets locked into a chain of mutual mean motion resonances. We ran N-body simulations of planetary embryos embedded in a protoplanetary disc. The embryos experienced gravitational scatterings, collisions, disc torques, and dampening of orbital eccentricity and inclination. We then modelled Kepler observations of these planets using a forward model of both the transit probability and the detection efficiency of the Kepler pipeline. We found that planets become locked into long chains of mean motion resonances that migrate in unison. When the chain reaches the edge of the disc, the inner planets are pushed past the edge due to the disc torques acting on the planets farther out in the chain. Our simulated systems successfully reproduce the observed period distribution of short-period Kepler planets between 1 and 2 R⊕. However, we obtain fewer closely packed short-period planets than in the Kepler sample. Our results provide valuable insight into the planet formation process, and suggests that resonance locks, migration, and dynamical instabilities play important roles in the formation and evolution of close-in small exoplanets.


2020 ◽  
Vol 498 (3) ◽  
pp. 4465-4471
Author(s):  
I Milić Žitnik

ABSTRACT This work examines asteroid’s motion with orbital eccentricity in the range (0.1, 0.2) across the two-body mean motion resonance (MMR) with Jupiter due to the Yarkovsky effect. We calculated time delays dtr caused by the resonance on the mobility of an asteroid with the Yarkovsky drift speed. Our final results considered only asteroids that successfully cross over the resonance without close encounters with planets. We found a functional relation that accurately describes dependence between the average time lead/lag 〈dtr〉, the strength of the resonance SR, and the semimajor axis drift speed da/dt with asteroids’ orbital eccentricities in the range (0.1, 0.2). We analysed average values of 〈dtr〉 using this functional relation comparing with obtained values of 〈dtr〉 from the numerical integrations, which were performed in an ORBIT9 integrator with a very large number of test asteroids. We checked the validity of our previous functional relation, derived for asteroids’ orbital eccentricities in the range (0, 0.1), on the present results for eccentricities in the range (0.1, 0.2). Also, we tried to find a unique functional relation for the whole interested interval of asteroids’ orbital eccentricities (0, 0.2) and discussed it.


2009 ◽  
Vol 103 (4) ◽  
pp. 343-364 ◽  
Author(s):  
Pavol Pástor ◽  
Jozef Klačka ◽  
Ladislav Kómar

2018 ◽  
pp. 2693-2711
Author(s):  
Alexandre C. M. Correia ◽  
Jean-Baptiste Delisle ◽  
Jacques Laskar

Sign in / Sign up

Export Citation Format

Share Document