gravitational processes
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 25)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Ilias Obda ◽  
Younes El Kharim ◽  
Ali Bounab ◽  
Abderrahim Lahrach ◽  
Mohammed Ahniche ◽  
...  

Since many decades, the town of Moulay Yacoub (MY) has undergone an intensification of its urbanization to meet the demands of rental housing for the visitors of the hydrothermal springs, which is considered as the only attraction of the town. Unfortunately, the majority of the buildings, both private and public, suffer from varying levels of damages where the lithological and geomorphic field features are to blame, without omitting the anthropogenic effects. In fact, the town is built on a marly hill conducive to slope movements, ranging from shallow solifluctions to large landslides, besides the swelling/shrinkage behaviour of these marls. The paper presents a multi-source approach to investigate the activity and the interactions of slow urbanized landslides and expansive soils within the urban perimeter of Moulay Yacoub. Indeed, the desiccation cracks of marly soils reveal their expansive behaviour, also attested by the swelling values. The other geotechnical parameters obtained from laboratory tests show that the shallow marls samples are severely weathered compared to those of the compacted deep ones. The Borehole data and seismic noise survey allows the detection of several impedance contrasts corresponding to the shallow weathered-deep marls interfaces which in some cases represent the rupture surfaces of gravitational processes. The very slow but perennial activities of the later are attested by the inclinometers, the PS-InSAR monitoring and building damages. The case study provides a good opportunity to highlight the complementarity of the multi-source tasks which stand as a further contribution to fostering this kind of integrated approaches at the slope scale.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2007
Author(s):  
Vadim A. Pellinen ◽  
Tatiana Yu. Cherkashina ◽  
Natalia N. Ukhova ◽  
Anastasia V. Komarova

The study object of this work is the soils of the Priolkhonye mountain-steppe landscapes. This research is performed at the Priolkhonye test site. Annual monitoring for exogenous geological process activity is conducted there. This research aims to study the influence of gravitational geological processes (landslides) on the migration of heavy metals, which are introduced into soil as a result of human agricultural activity. A methodology for the geoecological monitoring of soils based on an assessment of their contamination level by anthropogenic heavy metals, and a transfer mechanism throughout whole migration path (field–landslide–coast) is proposed. The following steps were taken to solve this problem: isolating a fine-grained fraction (<100 μm); determining the Hg, Cd, Pb, and Cu concentrations using wavelength dispersive X-ray fluorescence and atomic absorption spectroscopies, as well as total organic carbon (TOC) content using UV-Vis spectrophotometry; computing various geochemical indices; and describing the migration path of these heavy metals and TOC. The monitoring results showed that these pollutants migrate to the coastal zone as a result of landslides activation. The soil contamination level is increased which can cause negative toxic effects in coastal ecosystems, and could rise to a dangerous level for humans. Thus, the observed changes in the indices and TOC values allow us to assess the geoecological state of the study area; namely, the periods of landslide activity and the supply of these pollutants to the coastal zone.


Author(s):  
Yaroslav Kravchuk ◽  
Vitaliy Brusak

The relief and geological structure of Carpathian Biosphere Reserve represent the features of the geological and geomorphological structure of the four geomorphological regions of the Ukrainian Carpathians. The block mid-mountains of the Polonynsko-Chornohirsky Carpathians (Chornohora, Svydovets, and Uholsko-Shyrokoluzhansky massifs) and the folded mid-mountains of Marmarosy crystal massif (Marmarosy and Kuziy-Trybushansky massifs) are well protected within the reserve. The analysis of the morphostructure and morphosculpture of the reserve is carried out taking into account the longitudinal (NW–SE) and transverse divisions of the Ukrainian The analysis of the morphostructure and morphosculpture of the reserve is carried out taking into account the longitudinal (NW–SE) and transverse divisions of the Ukrainian Carpathians. The longitudinal division is associated with morphostructures of higher orders, such as second and third. The transverse division is associated with the fourth and fifth orders of morphostructures. In the analysis of morphosculpture of the reserve, the types characterized for all regions of Flysch and Crystal Carpathians are allocated. All mountain massifs and ridges could be characterized by an asymmetrical structure, such as steep northeastern slopes and acclivous southwestern slopes. The relic morphosculpture is represented by: 1) fragments of denudation surfaces of different ages such as Polonynska, Pidpolonynska, and riparian; 2) ancient glacial and extra glacial landforms; 3) areas of ancient longitudinal valleys. River valleys with a complex of different age terraces represent inherited morphosculpture. Modern morphodynamic processes are represented by height (tier) differentiation. The processes of sheet erosion, deflation, and rill erosion play an important role in the relief modeling for the tiers of strongly dissected mid-mountain relief. The lower tier of the terraced and non-terraced bottoms of the valleys are associated with the processes of leaching and erosion as well as a significant accumulation of erosion products and mudflows. Stabilized and active displacements are the most recorded among the gravitational processes and block motions. Key words: Carpathian Biosphere Reserve; Ukrainian Carpathians; relief; morphostructure; morphosculpture.


2021 ◽  
Author(s):  
Clive Anthony Redwood

Abstract The gravitational natures of phenomena separately attributed to dark matter and dark energy and challenges encountered in identifying such sources motivate enquiry into the capabilities of the field, itself, to generate such phenomena. It is found that, in curvature-free Friedmann-Lemaître-Robertson-Walker and gravitationally perturbed Robertson-Walker spacetimes, gravity has an equation of state parameter w = -1 and negative pressures. Expanding space is proposed as the form of a growing cosmic gravitational field. The gravitational-spatial expansion is locally isobaric. Barotropic gravitational dynamics yield the Hubble-Lemaître law. The expansion results from the induction of gravity by matter, radiation and by itself. Gravitational auto-induction is a dynamical feedback process that produces an isotropic spatial expansion with an invariant Hubble parameter like a ‘cosmological constant’ of density 2H2/κ or, equivalently, of a density parameter of 2/3. The Planck 2018 result is moderately higher at about the 2.5/σ level. A new expression of the Hubble parameter in the late homogeneous universe is obtained. The growth of the field isotropically stretches geodesics. In homogeneous regions, this manifests as the Hubble acceleration of bodies and the redshifting of radiation attributed to dark energy. Geodesics may depend on gravitational energy density that retains its values at comoving locations. In inhomogeneous regions, such retentions lead to similar retentions of circular speeds and deflection angles - geodesic stretching - attributed to clustering dark matter. The baryonic Tully-Fisher relation is explained. Dependence of geodesics on gravitational energy explains tidal interactions as being inertial gravitational processes.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 139
Author(s):  
Lorenzo Lovisari ◽  
Stefano Ettori ◽  
Massimo Gaspari ◽  
Paul A. Giles

Galaxy groups and poor clusters are more common than rich clusters, and host the largest fraction of matter content in the Universe. Hence, their studies are key to understand the gravitational and thermal evolution of the bulk of the cosmic matter. Moreover, because of their shallower gravitational potential, galaxy groups are systems where non-gravitational processes (e.g., cooling, AGN feedback, star formation) are expected to have a higher impact on the distribution of baryons, and on the general physical properties, than in more massive objects, inducing systematic departures from the expected scaling relations. Despite their paramount importance from the astrophysical and cosmological point of view, the challenges in their detection have limited the studies of galaxy groups. Upcoming large surveys will change this picture, reassigning to galaxy groups their central role in studying the structure formation and evolution in the Universe, and in measuring the cosmic baryonic content. Here, we review the recent literature on various scaling relations between X-ray and optical properties of these systems, focusing on the observational measurements, and the progress in our understanding of the deviations from the self-similar expectations on groups’ scales. We discuss some of the sources of these deviations, and how feedback from supernovae and/or AGNs impacts the general properties and the reconstructed scaling laws. Finally, we discuss future prospects in the study of galaxy groups.


Author(s):  
Fedor Zaitsev ◽  
Vladimir Bychkov

The book of well-known Russian scientists systematically presents a new theoretical approach to studying nature's fundamental phenomena using the hypothesis of the physical vacuum, or the ether, as some environment in which all the processes develop. In the proposed studies, the ether is represented as some one-component continuous media that satisfies generally accepted conservation laws: of matter and momentum. From the appropriate two equations, a number of consequences are obtained to which a physical interpretation is given. For the first time, 150 years after studies of Faraday and Maxwell, it is shown that these single premises mathematically give basic physical laws established experimentally: the Maxwell equations, the Lorentz force, the Gauss theorem; the laws: Coulomb, Biot - Savard, Ampere, electromagnetic induction, Ohm, Joule - Lenz, Wiedemann - Franz, universal gravitation, and etc. Details of mechanisms of many processes, that seemed previously paradoxical, have been disclosed. A method of the model substantiation adopted in the mathematical modeling methodology allows to conclude that the presented mathematical model of the ether adequately describes electromagnetic and gravitational processes. Qualitative and quantitative analysis of hundreds of known and new experimental facts allows in the methodology of physics, as science summarizing the experiments data, to confirm a conclusion about the existence of the ether (physical vacuum). The content of the book is based on the works of authors done during the last fourteen years. Many results are published for the first time. The book is intended for specialists in the field of electrodynamics, electrical engineering, gravity and kinetics, as well as for graduate students and students, interested in the fundamental principles of these scientific directions. This book is unique in terms of the comprehensive consideration of the problem and the depth of its analysis.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 174
Author(s):  
Marco Emanuele Discenza ◽  
Carlo Esposito ◽  
Goro Komatsu ◽  
Enrico Miccadei

The availability of high-quality surface data acquired by recent Mars missions and the development of increasingly accurate methods for analysis have made it possible to identify, describe, and analyze many geological and geomorphological processes previously unknown or unstudied on Mars. Among these, the slow and large-scale slope deformational phenomena, generally known as Deep-Seated Gravitational Slope Deformations (DSGSDs), are of particular interest. Since the early 2000s, several studies were conducted in order to identify and analyze Martian large-scale gravitational processes. Similar to what happens on Earth, these phenomena apparently occur in diverse morpho-structural conditions on Mars. Nevertheless, the difficulty of directly studying geological, structural, and geomorphological characteristics of the planet makes the analysis of these phenomena particularly complex, leaving numerous questions to be answered. This paper reports a synthesis of all the known studies conducted on large-scale deformational processes on Mars to date, in order to provide a complete and exhaustive picture of the phenomena. After the synthesis of the literature studies, the specific characteristics of the phenomena are analyzed, and the remaining main open issued are described.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2632
Author(s):  
Saverio Romeo ◽  
Antonio Cosentino ◽  
Francesco Giani ◽  
Giandomenico Mastrantoni ◽  
Paolo Mazzanti

Nowadays the use of remote monitoring sensors is a standard practice in landslide characterization and monitoring. In the last decades, technologies such as LiDAR, terrestrial and satellite SAR interferometry (InSAR) and photogrammetry demonstrated a great potential for rock slope assessment while limited studies and applications are still available for ArcSAR Interferometry, Gigapixel imaging and Acoustic sensing. Taking advantage of the facilities located at the Poggio Baldi Landslide Natural Laboratory, an intensive monitoring campaign was carried out on May 2019 using simultaneously the HYDRA-G ArcSAR for radar monitoring, the Gigapan robotic system equipped with a DSLR camera for photo-monitoring purposes and the DUO Smart Noise Monitor for acoustic measurements. The aim of this study was to evaluate the potential of each monitoring sensor and to investigate the ongoing gravitational processes at the Poggio Baldi landslide. Analysis of multi-temporal Gigapixel-images revealed the occurrence of 84 failures of various sizes between 14–17 May 2019. This allowed us to understand the short-term evolution of the rock cliff that is characterized by several impulsive rockfall events and continuous debris production. Radar displacement maps revealed a constant movement of the debris talus at the toe of the main rock scarp, while acoustic records proved the capability of this technique to identify rockfall events as well as their spectral content in a narrow range of frequencies between 200 Hz to 1000 Hz. This work demonstrates the great potential of the combined use of a variety of remote sensors to achieve high spatial and temporal resolution data in the field of landslide characterization and monitoring.


2021 ◽  
Author(s):  
Federico Di Traglia ◽  
Claudio De Luca ◽  
Alessandro Fornaciai ◽  
Mariarosaria Manzo ◽  
Teresa Nolesini ◽  
...  

&lt;p&gt;Steep-slope volcanoes are geomorphological systems receptive to both exogenous and endogenous phenomena. Volcanic activity produces debris and lava accumulation, whereas magmatic/tectonic and gravitational processes can have a destructive effect, triggering mass-wasting and erosion.&lt;/p&gt;&lt;p&gt;Optical and radar sensors have often been used to identify areas impacted by eruptive and post-eruptive phenomena, quantify of topographic changes, and/or map ground deformation related to magmatic-tectonic-gravitational processes.&lt;/p&gt;&lt;p&gt;In this work, the slope processes on high-gradient volcano flanks in response to shift in volcanic activity have been identified by means of remote sensing techniques. The Sciara del Fuoco unstable flank of Stromboli volcano (Italy) was studied, having a very large set (2010-2020) of different remote sensing data available.&lt;/p&gt;&lt;p&gt;Data includes LiDAR and tri-stereo PLEIADES-1 DEMs, high-spatial-resolution (HSR) optical imagery (QUICKBIRD and PLEIADES-1), and space-borne and ground-based Synthetic Aperture Radar (SAR) data. Multi-temporal DEMs and HSR optical imagery permits to map areas affected by major lithological and morphological changes, and the volumes of deposited/eroded material. The results lead to the identification of topographical variations and geomorphological processes that occurred in response to the variation in eruptive intensity. The joint exploitation of space-borne and ground-based Differential and Multi Temporal SAR Interferometry (InSAR and MT-InSAR) measurements revealed deformation phenomena affecting the volcano edifice, and in particular the Sciara del Fuoco flank.&lt;/p&gt;&lt;p&gt;The presented results demonstrate the effectiveness of the joint exploitation of multi-temporal DEMs, HSR optical imagery, and InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the slope phenomena in volcanic areas.&lt;/p&gt;&lt;p&gt;This work was financially supported by the &amp;#8220;Presidenza del Consiglio dei Ministri &amp;#8211; Dipartimento della Protezione Civile&amp;#8221; (Presidency of the Council of Ministers &amp;#8211; Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department&quot;.&lt;/p&gt;


2021 ◽  
Author(s):  
Joshua Er Addi Iparraguirre Ayala ◽  
Estibene Pool Vásquez Choque ◽  
Carlos Lenin Benavente Escobar ◽  
Flor de María Zanini Maldonado ◽  
Hugo Dulio Gómez Velásquez

&lt;p&gt;The Peruvian coast is one of the driest in the world, but it is continuously affected by extraordinary rains associated with El Ni&amp;#241;o and/or La Ni&amp;#241;a phenomenon. During these periods of intense rainfall, high flow rates are registered and gravitational processes are reported along the valleys, such as: landslides, debris flow, rock falls, avalanches, among others.&lt;/p&gt;&lt;p&gt;This work presents the first estimation of the Stream Power, relationship between the energy, the flow, the slope of the channel and the density of the flow of the Chancay - Lambayeque basin, with the objective of determining the energy of the main rivers in the basin and relating with gravitational processes and damage to infrastructures.&lt;/p&gt;&lt;p&gt;We use two softwares: LSDTopoTools and ArcSWAT (version for ArcGIS 10.6). Using high resolution Digital Elevation Models (Alos Palsar, 12.5 m) we delimit the basin, its drainage area, water network and slope using LSDTopoTools. Subsequently, we use the SWAT program.&lt;/p&gt;&lt;p&gt;First, the sub-basins were delimited. Second, the Hydrological Response Units (HRU) were obtained, applying the Land Use data and the FAO base guide on soil types updated by the Ministry of Agriculture and Irrigation of Peru (MINAGRI). Third, we process data on temperature, wind speed, humidity, solar radiation and rainfall from 1970 - 2018 from five meteorological stations distributed in the study basin, whose data were provided by the National Meteorology and Hydrology Service of Peru (SENAMHI). Next, we include in the analyzes the flow data from the Tinajones reservoir (6&amp;#176; 38&amp;#180;S, 79&amp;#176; 29&amp;#180;W). Finally, the annual flow rates (Hm&lt;sup&gt;3&lt;/sup&gt;/s) were simulated and adjusted using SWATCup.&lt;/p&gt;&lt;p&gt;The results show an average flow for the year 2018 that varies from 13 Hm&lt;sup&gt;3&lt;/sup&gt;/s - 49 Hm&lt;sup&gt;3&lt;/sup&gt;/s. This means that the Stream Power varies from 1.3x10&lt;sup&gt;12&lt;/sup&gt;Kw-4.8x10&lt;sup&gt;12&lt;/sup&gt;Kw, the maximum power coinciding with the location of the Tinajones reservoir in the middle basin.&lt;/p&gt;&lt;p&gt;These results have allowed us to identify that 73% of the critical zones (zones with presence of gravitational processes) are in the sections where the rivers register high Stream Power; and in the same way in these sections geological dangers predominate such as flows and rock falls. In addition, infrastructures were located that may be susceptible to being damaged (e.g. three bridges, where flows range between ~22-35 Hm&lt;sup&gt;3&lt;/sup&gt;/s) and/or may compromise the health of the inhabitants (e.g. five mining deposits located along the basin, considered high risk).&lt;/p&gt;&lt;p&gt;And to conclude, because the Tinajones reservoir is reaching its maximum capacity, a possible area was identified where a new reservoir can be housed (complying with all technical conditions), whose location would be 20 km to the east, in the province of Chumbil Alto (Cajamarca - Peru).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document