scholarly journals The Shellless Supernova Remnant B0532–67.5 in the Large Magellanic Cloud

2021 ◽  
Vol 163 (1) ◽  
pp. 30
Author(s):  
Chuan-Jui Li ◽  
You-Hua Chu ◽  
Chen-Yu Chuang ◽  
Guan-Hong Li

Abstract The supernova remnant (SNR) B0532−67.5 in the Large Magellanic Cloud (LMC) was first diagnosed by its nonthermal radio emission, and its SNR nature was confirmed by the observation of diffuse X-ray emission; however, no optical SNR shell is detected. The OB association LH75, or NGC 2011, is projected within the boundary of this SNR. We have analyzed the massive star population in and around SNR B0532−67.5 using optical photometric data to construct color–magnitude diagrams, using stellar evolutionary tracks to estimate stellar masses, and using isochrones to assess the stellar ages. From these analyses, we find a 20–25 Myr population in LH75 and a younger population less than 10 Myr old to the southwest of LH75. The center of SNR B0532−67.5 is located closer to the core of LH75 than to the massive stars to its southwest. We conclude that the supernova progenitor was probably a member of LH75 with an initial mass of ∼15 M ⊙. The supernova exploded in an H i cavity excavated by the energy feedback of LH75. The low density of the ambient medium prohibits the formation of a visible nebular shell. Despite the low density in the ambient medium, physical properties of the hot gas within the SNR interior do not differ from SNRs with a visible shell by more than a factor of 2–3. The large-scale H i map shows that SNR B0532−67.5 is projected in a cavity that appears to be connected with the much larger cavity of the supergiant shell LMC-4.

2019 ◽  
Vol 631 ◽  
pp. A127 ◽  
Author(s):  
Pierre Maggi ◽  
Miroslav D. Filipović ◽  
Branislav Vukotić ◽  
Jean Ballet ◽  
Frank Haberl ◽  
...  

Aims. We present a comprehensive study on the supernova remnant (SNR) population of the Small Magellanic Cloud (SMC). We measured multiwavelength properties of the SMC SNRs and compare them to those of the Large Magellanic Cloud (LMC) population. Methods. This study combines the large dataset of XMM-Newton observations of the SMC, archival and recent radio continuum observations, an optical line emission survey, and new optical spectroscopic observations. We were therefore able to build a complete and clean sample of 19 confirmed and four candidate SNRs. The homogeneous X-ray spectral analysis allowed us to search for SN ejecta and Fe K line emission, and to measure interstellar medium abundances. We estimated the ratio of core-collapse to type Ia supernova rates of the SMC based on the X-ray properties and the local stellar environment of each SNR. Results. After the removal of unconfirmed or misclassified objects, and the addition of two newly confirmed SNRs based on multi-wavelength features, we present a final list of 21 confirmed SNRs and two candidates. While no Fe K line is detected even for the brightest and youngest SNR, we find X-ray evidence of SN ejecta in 11 SNRs. We estimate a fraction of 0.62–0.92 core-collapse supernova for every supernova (90% confidence interval), higher than in the LMC. The difference can be ascribed to the absence of the enhanced star-formation episode in the SMC, which occurred in the LMC 0.5–1.5 Gyr ago. The hot-gas abundances of O, Ne, Mg, and Fe are 0.1–0.2 times solar. Their ratios, with respect to SMC stellar abundances, reflect the effects of dust depletion and partial dust destruction in SNR shocks. We find evidence that the ambient medium probed by SMC SNRs is less disturbed and less dense on average than in the LMC, consistent with the different morphologies of the two galaxies.


2020 ◽  
Vol 500 (2) ◽  
pp. 2336-2358
Author(s):  
Miranda Yew ◽  
Miroslav D Filipović ◽  
Milorad Stupar ◽  
Sean D Points ◽  
Manami Sasaki ◽  
...  

ABSTRACT We present a new optical sample of three Supernova Remnants (SNRs) and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). These objects were originally selected using deep H α, [S ii], and [O iii] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMC’s main body. Together with previously suggested MCSNR J0541–6659, we confirm the SNR nature for two additional new objects: MCSNR J0522–6740 and MCSNR J0542–7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [S ii]/H α emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509–6402 to be a special example of the remnant of a possible type Ia Supernova (SN) which is situated some 2° (∼1.75 kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of ∼2. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.


2016 ◽  
Vol 826 (2) ◽  
pp. 150 ◽  
Author(s):  
Michael A. Dopita ◽  
Ivo R. Seitenzahl ◽  
Ralph S. Sutherland ◽  
Frédéric P. A. Vogt ◽  
P. Frank Winkler ◽  
...  

2013 ◽  
Vol 549 ◽  
pp. A99 ◽  
Author(s):  
P. J. Kavanagh ◽  
M. Sasaki ◽  
S. D. Points ◽  
M. D. Filipović ◽  
P. Maggi ◽  
...  

Author(s):  
E. Kontizas ◽  
S. E. Maravelias ◽  
A. Dapergolas ◽  
Y. Bellas-Velidis ◽  
M. Kontizas

2010 ◽  
pp. 43-49 ◽  
Author(s):  
L.M. Bozzetto ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
I.S. Bojicic ◽  
J.L. Payne ◽  
...  

We present a detailed study and results of new Australia Telescope Compact Array (ATCA) observations of supernova remnant SNR J0527-6549. This Large Magellanic Cloud (LMC) object follows a typical supernova remnant (SNR) horseshoe morphology with a diameter of D=(66?58)?1 pc which is among the largest SNRs in the LMC. Its relatively large size indicates older age while a steeper than expected radio spectral index of ?=-0.92?0.11 is more typical of younger and energetic SNRs. Also, we report detections of regions with a high order of polarization at a peak value of ~54%?17% at 6 cm.


1980 ◽  
Vol 242 ◽  
pp. L73 ◽  
Author(s):  
D. S. Mathewson ◽  
M. A. Dopita ◽  
I. R. Tuohy ◽  
V. L. Ford

1991 ◽  
Vol 148 ◽  
pp. 69-70
Author(s):  
J. Koornneef

We introduce an as yet unpublished set of OAO-II observations of stellar associations in the Large Magellanic Cloud (LMC). Cross-correlation of the photometric characteristics of these fields with the infrared fluxes at these same positions obtained by the IRAS satellite provides information on the local stellar population, the amounts of interstellar extinction and thermal dust emission.


Sign in / Sign up

Export Citation Format

Share Document