nonthermal radio emission
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 163 (1) ◽  
pp. 30
Author(s):  
Chuan-Jui Li ◽  
You-Hua Chu ◽  
Chen-Yu Chuang ◽  
Guan-Hong Li

Abstract The supernova remnant (SNR) B0532−67.5 in the Large Magellanic Cloud (LMC) was first diagnosed by its nonthermal radio emission, and its SNR nature was confirmed by the observation of diffuse X-ray emission; however, no optical SNR shell is detected. The OB association LH75, or NGC 2011, is projected within the boundary of this SNR. We have analyzed the massive star population in and around SNR B0532−67.5 using optical photometric data to construct color–magnitude diagrams, using stellar evolutionary tracks to estimate stellar masses, and using isochrones to assess the stellar ages. From these analyses, we find a 20–25 Myr population in LH75 and a younger population less than 10 Myr old to the southwest of LH75. The center of SNR B0532−67.5 is located closer to the core of LH75 than to the massive stars to its southwest. We conclude that the supernova progenitor was probably a member of LH75 with an initial mass of ∼15 M ⊙. The supernova exploded in an H i cavity excavated by the energy feedback of LH75. The low density of the ambient medium prohibits the formation of a visible nebular shell. Despite the low density in the ambient medium, physical properties of the hot gas within the SNR interior do not differ from SNRs with a visible shell by more than a factor of 2–3. The large-scale H i map shows that SNR B0532−67.5 is projected in a cavity that appears to be connected with the much larger cavity of the supergiant shell LMC-4.


2020 ◽  
Author(s):  
Laurent Lamy

<p>Before to ultimately plunge into Saturn’s atmosphere, the Cassini spacecraft explored between 2016 and 2017 the auroral regions of Saturn’s magnetosphere, where rises the Saturn’s Kilometric Radiation (SKR). This powerful, nonthermal, radio emission analog to Earth’s Auroral Kilometric Radiation, is radiated through the Cyclotron Maser Instability (CMI) by mildly relativistic electrons at frequencies close to the local electron gyrofrequency. The typical SKR spectrum, which ranges from a few kHz to ~1MHz, thus corresponds to auroral magnetic flux tubes populated by radiosources at altitudes ranging from ~4 kronian radii (Rs) down to the planetary ionosphere.<span class="Apple-converted-space">  </span>During the F-ring orbital sequence, Cassini probed the outer part of both northern and southern auroral regions, ranging from ~2.5 to ~4 Rs altitudes, and crossed several SKR low frequency sources (~10-30 kHz). Their analysis showed that the radiosources strongly vary with time and local time, with the lowest frequencies reached on the dawn sector. They were additionally colocated with the UV auroral oval and controlled by local time-variable magnetospheric electron densities, with importants consequences for the use SKR low frequency extensions as a proxy of magnetospheric dynamics. Along the proximal orbits, Cassini then explored auroral altitudes below ~2.5 Rs and crossed numerous, deeper, SKR sources at frequencies close to, or within the emission peak frequency (~80-200 kHz). Here, we present preliminary results of their survey analysis. Understanding how the CMI operates in the widely different environments of solar system magnetized planets has direct implications for the ongoing search of radio emissions from exoplanets, ultracool dwarves or stars.</p>


2019 ◽  
Vol 624 ◽  
pp. A55 ◽  
Author(s):  
J. Sanchez-Bermudez ◽  
A. Alberdi ◽  
R. Schödel ◽  
W. Brandner ◽  
R. Galván-Madrid ◽  
...  

Context. Colliding winds in massive binaries are able to accelerate particles up to relativistic speeds as the result of the interaction between the winds of the different stellar components. HD 167971 exhibits this phenomenon which makes it a strong radio source. Aims. We aim at characterizing the morphology of the radio emission and its dependence on the orbital motion, traced independently by near-infrared (NIR) interferometry of both the spectroscopic binary and the tertiary component comprising HD 167971. Methods. We analyze 2006 and 2016 very long baseline interferometric data at C and X bands. We complement our analysis with a geometrical model of the wind-wind collision region and an astrometric description of the system. Results. We confirm that the detected nonthermal radio emission is associated with the wind-wind collision region of the spectroscopic binary and the tertiary component in HD 167971. The wind-wind collision region changes orientation in agreement with the orbital motion of the tertiary around the spectroscopic binary. The total intensity also changes between the two observing epochs in a way that is inversely proportional to the separation between the two components, with a negative-steep spectral index typical of an optically thin synchrotron emission possibly steepened by an inverse Compton cooling effect. The wind-wind collision bow-shock shape and its position with respect to the stars indicates that the wind momentum from the spectroscopic binary is stronger than that of the tertiary. Finally, the astrometric solution derived for the stellar system and the wind-wind collision region is consistent with independent Gaia data.


2018 ◽  
Vol 616 ◽  
pp. A98 ◽  
Author(s):  
L. Supan ◽  
G. Castelletti ◽  
W. M. Peters ◽  
N. E. Kassim

We have identified a new supernova remnant (SNR), G51.04+0.07, using observations at 74 MHz from the Very Large Array Low-Frequency Sky Survey Redux (VLSSr). Earlier, higher frequency radio continuum, recombination line, and infrared data had correctly inferred the presence of nonthermal radio emission within a larger, complex environment including ionised nebulae and active star formation. However, our observations have allowed us to redefine at least one SNR as a relatively small source (7.′5 × 3′in size) located at the southern periphery of the originally defined SNR candidate G51.21+0.11. The integrated flux density of G51.04+0.07 at 74 MHz is 6.1 ± 0.8 Jy, while its radio continuum spectrum has a slope α = −0.52 ± 0.05 (S v ∝ vα), typical of a shell-type remnant. We also measured spatial variations in the spectral index between 74 and 1400 MHz across the source, ranging from a steeper spectrum (α = −0.50 ± 0.04) coincident with the brightest emission to a flatter component (α = −0.30 ± 0.07) in the surrounding fainter region. To probe the interstellar medium into which the redefined SNR is likely evolving, we have analysed the surrounding atomic and molecular gas using the 21 cm neutral hydrogen (HI) and 13CO(J = 1 − 0) emissions. We found that G51.04+0.07 is confined within an elongated HI cavity and that its radio emission is consistent with the remains of a stellar explosion that occurred ~6300 yr ago at a distance of 7.7 ± 2.3 kpc. Kinematic data suggest that the newly discovered SNR lies in front of HII regions in the complex, consistent with the lack of a turnover in the low frequency continuum spectrum. The CO observations revealed molecular material that traces the central and northern parts of G51.04+0.07. The interaction between the cloud and the radio source is not conclusive and motivates further study. The relatively low flux density (~1.5 Jy at 1400 MHz) of G51.04+0.07 is consistent with this and many similar SNRs lying hidden along complex lines of sight towards inner Galactic emission complexes. It would also not be surprising if the larger complex studied here hosted additional SNRs.


2005 ◽  
Vol 43 (6) ◽  
pp. 413-422
Author(s):  
V. N. Kuril'chik ◽  
M. Y. Boudjada ◽  
H. O. Rucker ◽  
I. F. Kopaeva ◽  
S. V. Mironov

2005 ◽  
Vol 626 (1) ◽  
pp. L23-L27 ◽  
Author(s):  
T. N. LaRosa ◽  
C. L. Brogan ◽  
S. N. Shore ◽  
T. J. Lazio ◽  
N. E. Kassim ◽  
...  

2003 ◽  
Vol 47 (1) ◽  
pp. 31-37
Author(s):  
O. V. Abramova ◽  
P. V. Averin ◽  
K. V. Bychkov

2000 ◽  
Vol 195 ◽  
pp. 313-314
Author(s):  
K. R. Lang

The Very Large Array has been used to detect nonthermal radio emission from nearby stars of late spectral type F, G, K, and M, and has provided unique high-resolution investigations of the Sun's radio emission.


1999 ◽  
Vol 519 (2) ◽  
pp. 850-857 ◽  
Author(s):  
Jennifer Nicholls ◽  
Michelle C. Storey

1999 ◽  
Vol 169 ◽  
pp. 178-186
Author(s):  
Steven N. Shore

AbstractThe upper main sequence chemically peculiar (CP) stars display evidence of trapped circumstellar gas and nonspherical outflows. These stars are also known to possess strong magnetic fields that are often highly inclined to the rotational axis. Their phenomenology can be understood by using the oblique rotator model, which has successfully accounted for the observed behavior of the cooler CP stars. This paper reviews some features of the oblique rotator model, in which the magnetic field is assumed to provide a rigid framework for the structuring of the stellar and circumstellar gas. Corotation of circumstellar plasma is enforced out to the Alfven radius in the magnetic equatorial plane, while for the hotter stars, a radiatively driven wind emerges from the magnetic polar caps. Some observable consequences of the model are discussed, especially the Hα and ultraviolet resonance line absorption and emission periodic variability that has been observed in the He-peculiar stars and nonthermal radio emission. Magnetospheres may also be present in O stars, e.g. θ1 Ori C, and in the Herbig Ae/Be stars.


Sign in / Sign up

Export Citation Format

Share Document