scholarly journals A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole

2018 ◽  
Vol 865 (1) ◽  
pp. 13 ◽  
Author(s):  
G. R. Tremblay ◽  
F. Combes ◽  
J. B. R. Oonk ◽  
H. R. Russell ◽  
M. A. McDonald ◽  
...  
Keyword(s):  
2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2021 ◽  
Vol 503 (4) ◽  
pp. 5984-5996
Author(s):  
Mark D Smith ◽  
Martin Bureau ◽  
Timothy A Davis ◽  
Michele Cappellari ◽  
Lijie Liu ◽  
...  

ABSTRACT Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0${^{\prime\prime}_{.}}$11 ($37\,$pc) resolution in the 12CO(2-1) line and $1.3\,$ mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of $2.5\pm 0.3\times 10^{9}\, \mathrm{M_\odot }$ and a stellar I-band mass-to-light ratio of $4.6\pm 0.2\, \mathrm{M_\odot /L_{\odot ,I}}$ (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.


2017 ◽  
Vol 473 (3) ◽  
pp. 3818-3834 ◽  
Author(s):  
Timothy A. Davis ◽  
Martin Bureau ◽  
Kyoko Onishi ◽  
Freeke van de Voort ◽  
Michele Cappellari ◽  
...  

Author(s):  
Kyoko Onishi ◽  
Satoru Iguchi ◽  
Timothy Davis ◽  
Martin Bureau ◽  
Michele Cappellari ◽  
...  

2017 ◽  
Vol 468 (4) ◽  
pp. 4675-4690 ◽  
Author(s):  
Timothy A. Davis ◽  
Martin Bureau ◽  
Kyoko Onishi ◽  
Michele Cappellari ◽  
Satoru Iguchi ◽  
...  

2006 ◽  
Vol 2 (S235) ◽  
pp. 358-361
Author(s):  
Fabian Walter

AbstractI will discuss the search for galaxies and QSOs at the highest redshifts, out to the Epoch of Reionization. Observations in the submillimeter play a fundamental role in such searches, in particular once ALMA will become operational. I will focus on the properties of the molecular gas (the phase of the ISM out of which stars form) in the earliest systems as derived through observations in the millimetre and radio regime. These observations allow us to measure the reservoir of molecular gas and to constrain the physical properties and excitation of the gas. Resolved imaging of the host galaxies also allows us to derive first dynamical masses for these objects. Such mass determinations are critical to determine whether there is a possible evolution of the famous MBH–σbulgerelation with redshift or not. Recent measurements in the QSO redshift record holder J1148+5251 (z= 6.42) provide evidence that the black hole in this system assembled before the stellar bulge.


2014 ◽  
Vol 445 (2) ◽  
pp. 1558-1566 ◽  
Author(s):  
R. Decarli ◽  
M. Dotti ◽  
C. Mazzucchelli ◽  
C. Montuori ◽  
M. Volonteri

2020 ◽  
Vol 496 (4) ◽  
pp. 4061-4078 ◽  
Author(s):  
Timothy A Davis ◽  
Dieu D Nguyen ◽  
Anil C Seth ◽  
Jenny E Greene ◽  
Kristina Nyland ◽  
...  

ABSTRACT We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈5 × 105 M⊙ black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5$^{+4.1}_{-3.8}\times 10^5$ M⊙ (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass–velocity dispersion and black hole mass–bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.


2019 ◽  
Vol 14 (S353) ◽  
pp. 199-202
Author(s):  
Sabine Thater ◽  
Davor Krajnović ◽  
Dieu D. Nguyen ◽  
Satoru Iguchi ◽  
Peter M. Weilbacher

AbstractWe present our ongoing work of using two independent tracers to estimate the supermassive black hole mass in the nearby early-type galaxy NGC 6958; namely integrated stellar and molecular gas kinematics. We used data from the Atacama Large Millimeter/submillimeter Array (ALMA), and the adaptive-optics assisted Multi-Unit Spectroscopic Explorer (MUSE) and constructed state-of-the-art dynamical models. The different methods provide black hole masses of (2.89±2.05)×108M⊙ from stellar kinematics and (1.35±0.09)×108M⊙ from molecular gas kinematics which are consistent within their 3σ uncertainties. Compared to recent MBH - σe scaling relations, we derive a slightly over-massive black hole. Our results also confirm previous findings that gas-based methods tend to provide lower black hole masses than stellar-based methods. More black hole mass measurements and an extensive analysis of the method-dependent systematics are needed in the future to understand this noticeable discrepancy.


Nature ◽  
2013 ◽  
Vol 494 (7437) ◽  
pp. 328-330 ◽  
Author(s):  
Timothy A. Davis ◽  
Martin Bureau ◽  
Michele Cappellari ◽  
Marc Sarzi ◽  
Leo Blitz

Sign in / Sign up

Export Citation Format

Share Document