scholarly journals Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits

2019 ◽  
Vol 880 (2) ◽  
pp. 91 ◽  
Author(s):  
Pieter van Dokkum ◽  
Asher Wasserman ◽  
Shany Danieli ◽  
Roberto Abraham ◽  
Jean Brodie ◽  
...  
1998 ◽  
Vol 59 (2) ◽  
Author(s):  
Edward A. Baltz ◽  
Andrew J. Westphal ◽  
Daniel P. Snowden-Ifft

2017 ◽  
Vol 839 (1) ◽  
pp. 20 ◽  
Author(s):  
Nelson Caldwell ◽  
Matthew G. Walker ◽  
Mario Mateo ◽  
Edward W. Olszewski ◽  
Sergey Koposov ◽  
...  

2019 ◽  
Vol 487 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
D Savchenko ◽  
A Rudakovskyi

ABSTRACTDwarf spheroidal galaxies (dSphs) are the most compact dark-matter-dominated objects observed so far. The Pauli exclusion principle limits the number of fermionic dark matter particles that can compose a dSph halo. This results in a well-known lower bound on their particle mass. So far, such bounds were obtained from the analysis of individual dSphs. In this paper, we model dark matter halo density profiles via the semi-analytical approach and analyse the data from eight ‘classical’ dSphs assuming the same mass of dark matter fermion in each object. First, we find out that modelling of Carina dSph results in a much worse fitting quality compared to the other seven objects. From the combined analysis of the kinematic data of the remaining seven ‘classical’ dSphs, we obtain a new 2σ lower bound of m ≳ 190 eV on the dark matter fermion mass. In addition, by combining a sub-sample of four dSphs – Draco, Fornax, Leo I, and Sculptor – we conclude that 220 eV fermionic dark matter appears to be preferred over the standard cold dark matter at about the 2σ level. However, this result becomes insignificant if all seven objects are included in the analysis. Future improvement of the obtained bound requires more detailed data, both from ‘classical’ and ultra-faint dSphs.


1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


2003 ◽  
Vol 208 ◽  
pp. 391-392
Author(s):  
Andreea S. Font ◽  
Julio F. Navarro

We investigate recent suggestions that substructure in cold dark matter (CDM) halos has potentially destructive effects on galactic disks. N-body simulations of disk/bulge models of the Milky Way, embedded in a dark matter halo with substructure similar to that found in cosmological simulations, show that tides from substructure halos play only a minor role in the dynamical heating of the stellar disk. This suggests that substructure might not preclude CDM halos from being acceptable hosts of thin stellar disks.


2020 ◽  
Vol 498 (4) ◽  
pp. 6013-6033
Author(s):  
Mario H Amante ◽  
Juan Magaña ◽  
V Motta ◽  
Miguel A García-Aspeitia ◽  
Tomás Verdugo

ABSTRACT Inspired by a new compilation of strong-lensing systems, which consist of 204 points in the redshift range 0.0625 < zl < 0.958 for the lens and 0.196 < zs < 3.595 for the source, we constrain three models that generate a late cosmic acceleration: the ω-cold dark matter model, the Chevallier–Polarski–Linder, and the Jassal–Bagla–Padmanabhan parametrizations. Our compilation contains only those systems with early-type galaxies acting as lenses, with spectroscopically measured stellar velocity dispersions, estimated Einstein radius, and both the lens and source redshifts. We assume an axially symmetric mass distribution in the lens equation, using a correction to alleviate differences between the measured velocity dispersion (σ) and the dark matter halo velocity dispersion (σDM) as well as other systematic errors that may affect the measurements. We have considered different subsamples to constrain the cosmological parameters of each model. Additionally, we generate a mock data of SLS to asses the impact of the chosen mass profile on the accuracy of Einstein radius estimation. Our results show that cosmological constraints are very sensitive to the selected data: Some cases show convergence problems in the estimation of cosmological parameters (e.g. systems with observed distance ratio Dobs < 0.5), others show high values for the χ2 function (e.g. systems with a lens equation Dobs > 1 or high velocity dispersion σ > 276 km s−1). However, we obtained a fiduciary sample with 143 systems, which improves the constraints on each tested cosmological model.


2007 ◽  
Vol 383 (2) ◽  
pp. 546-556 ◽  
Author(s):  
Shaun Cole ◽  
John Helly ◽  
Carlos S. Frenk ◽  
Hannah Parkinson

2006 ◽  
Vol 368 (4) ◽  
pp. 1931-1940 ◽  
Author(s):  
Y. Lu ◽  
H. J. Mo ◽  
N. Katz ◽  
M. D. Weinberg

2004 ◽  
Vol 21 (2) ◽  
pp. 212-215 ◽  
Author(s):  
Amina Helmi

AbstractThe confined nature of the debris from the Sagittarius dwarf to a narrow trail on the sky has recently prompted the suggestion that the dark matter halo of our Galaxy should be nearly spherical (Ibata et al. 2001; Majewski et al. 2003). This would seem to be in strong contrast with predictions from cold dark matter (CDM) simulations, where dark halos are found to have typical density axis ratios of 0.6 to 0.8. Here I present numerical simulations of the evolution of a system like the Sagittarius dSph in a set of Galactic potentials with varying degrees of flattening. These simulations show that the Sagittarius streams discovered so far are too young dynamically to be sensitive to the shape of the dark halo of the Milky Way. The data presently available are entirely consistent with a Galactic dark matter halo that could either be oblate or prolate, with density axis ratios c/a that range from 0.6 to 1.6 within the region of the halo probed by the orbit of the Sagittarius dwarf.


Sign in / Sign up

Export Citation Format

Share Document