scholarly journals Testing dark energy models with a new sample of strong-lensing systems

2020 ◽  
Vol 498 (4) ◽  
pp. 6013-6033
Author(s):  
Mario H Amante ◽  
Juan Magaña ◽  
V Motta ◽  
Miguel A García-Aspeitia ◽  
Tomás Verdugo

ABSTRACT Inspired by a new compilation of strong-lensing systems, which consist of 204 points in the redshift range 0.0625 < zl < 0.958 for the lens and 0.196 < zs < 3.595 for the source, we constrain three models that generate a late cosmic acceleration: the ω-cold dark matter model, the Chevallier–Polarski–Linder, and the Jassal–Bagla–Padmanabhan parametrizations. Our compilation contains only those systems with early-type galaxies acting as lenses, with spectroscopically measured stellar velocity dispersions, estimated Einstein radius, and both the lens and source redshifts. We assume an axially symmetric mass distribution in the lens equation, using a correction to alleviate differences between the measured velocity dispersion (σ) and the dark matter halo velocity dispersion (σDM) as well as other systematic errors that may affect the measurements. We have considered different subsamples to constrain the cosmological parameters of each model. Additionally, we generate a mock data of SLS to asses the impact of the chosen mass profile on the accuracy of Einstein radius estimation. Our results show that cosmological constraints are very sensitive to the selected data: Some cases show convergence problems in the estimation of cosmological parameters (e.g. systems with observed distance ratio Dobs < 0.5), others show high values for the χ2 function (e.g. systems with a lens equation Dobs > 1 or high velocity dispersion σ > 276 km s−1). However, we obtained a fiduciary sample with 143 systems, which improves the constraints on each tested cosmological model.

2020 ◽  
Vol 644 ◽  
pp. A108
Author(s):  
Lyne Van de Vyvere ◽  
Dominique Sluse ◽  
Sampath Mukherjee ◽  
Dandan Xu ◽  
Simon Birrer

Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. However, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the specific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the Einstein radius.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2013 ◽  
Vol 9 (S298) ◽  
pp. 411-411
Author(s):  
Kohei Hayashi ◽  
Masashi Chiba

AbstractWe construct axisymmetric mass models for dwarf spheroidal (dSph) galaxies in the Milky Way to obtain realistic limits on the non-spherical structure of their dark halos. This is motivated by the fact that the observed luminous parts of the dSphs are actually non-spherical and cold dark matter models predict non-spherical virialized dark halos on sub-galactic scales. Applying these models to line-of-sight velocity dispersion profiles along three position angles in six Galactic satellites, we find that the best fitting cases for most of the dSphs yield not spherical but oblate and flattened dark halos. We also find that the mass of the dSphs enclosed within inner 300 pc varies depending on their total luminosities, contrary to the conclusion of previous spherical models. This suggests the importance of considering non-spherical shapes of dark halos in dSph mass models.


1998 ◽  
Vol 59 (2) ◽  
Author(s):  
Edward A. Baltz ◽  
Andrew J. Westphal ◽  
Daniel P. Snowden-Ifft

2021 ◽  
Vol 922 (2) ◽  
pp. 104
Author(s):  
Raymond G. Carlberg ◽  
Carl J. Grillmair

Abstract The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color–magnitude diagrams to select high-probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the Sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3–6 half-mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters that started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The six clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The two clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.


2017 ◽  
Vol 839 (1) ◽  
pp. 20 ◽  
Author(s):  
Nelson Caldwell ◽  
Matthew G. Walker ◽  
Mario Mateo ◽  
Edward W. Olszewski ◽  
Sergey Koposov ◽  
...  

2019 ◽  
Vol 485 (2) ◽  
pp. 2861-2876 ◽  
Author(s):  
Benjamin V Church ◽  
Philip Mocz ◽  
Jeremiah P Ostriker

ABSTRACT Although highly successful on cosmological scales, cold dark matter (CDM) models predict unobserved overdense ‘cusps’ in dwarf galaxies and overestimate their formation rate. We consider an ultralight axion-like scalar boson which promises to reduce these observational discrepancies at galactic scales. The model, known as fuzzy dark matter (FDM), avoids cusps, suppresses small-scale power, and delays galaxy formation via macroscopic quantum pressure. We compare the substructure and density fluctuations of galactic dark matter haloes comprised of ultralight axions to conventional CDM results. Besides self-gravitating subhaloes, FDM includes non-virialized overdense wavelets formed by quantum interference patterns, which are an efficient source of heating to galactic discs. We find that, in the solar neighbourhood, wavelet heating is sufficient to give the oldest disc stars a velocity dispersion of ${\sim } {30}{\, \mathrm{km\, s}^{-1}}$ within a Hubble time if energy is not lost from the disc, the velocity dispersion increasing with stellar age as σD ∝ t0.4 in agreement with observations. Furthermore, we calculate the radius-dependent velocity dispersion and corresponding scaleheight caused by the heating of this dynamical substructure in both CDM and FDM with the determination that these effects will produce a flaring that terminates the Milky Way disc at $15\!-\!20{\, \mathrm{kpc}}$. Although the source of thickened discs is not known, the heating due to perturbations caused by dark substructure cannot exceed the total disc velocity dispersion. Therefore, this work provides a lower bound on the FDM particle mass of ma > 0.6 × 10−22 eV. Furthermore, FDM wavelets with this particle mass should be considered a viable mechanism for producing the observed disc thickening with time.


2019 ◽  
Vol 487 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
D Savchenko ◽  
A Rudakovskyi

ABSTRACTDwarf spheroidal galaxies (dSphs) are the most compact dark-matter-dominated objects observed so far. The Pauli exclusion principle limits the number of fermionic dark matter particles that can compose a dSph halo. This results in a well-known lower bound on their particle mass. So far, such bounds were obtained from the analysis of individual dSphs. In this paper, we model dark matter halo density profiles via the semi-analytical approach and analyse the data from eight ‘classical’ dSphs assuming the same mass of dark matter fermion in each object. First, we find out that modelling of Carina dSph results in a much worse fitting quality compared to the other seven objects. From the combined analysis of the kinematic data of the remaining seven ‘classical’ dSphs, we obtain a new 2σ lower bound of m ≳ 190 eV on the dark matter fermion mass. In addition, by combining a sub-sample of four dSphs – Draco, Fornax, Leo I, and Sculptor – we conclude that 220 eV fermionic dark matter appears to be preferred over the standard cold dark matter at about the 2σ level. However, this result becomes insignificant if all seven objects are included in the analysis. Future improvement of the obtained bound requires more detailed data, both from ‘classical’ and ultra-faint dSphs.


1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


Sign in / Sign up

Export Citation Format

Share Document