einstein radius
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 163 (2) ◽  
pp. 43
Author(s):  
Kyu-Ha Hwang ◽  
Weicheng Zang ◽  
Andrew Gould ◽  
Andrzej Udalski ◽  
Ian A. Bond ◽  
...  

Abstract We apply the automated AnomalyFinder algorithm of Paper I to 2018–2019 light curves from the ≃13 deg2 covered by the six KMTNet prime fields, with cadences Γ ≥ 2 hr−1. We find a total of 11 planets with mass ratios q < 2 × 10−4, including 6 newly discovered planets, 1 planet that was reported in Paper I, and recovery of 4 previously discovered planets. One of the new planets, OGLE-2018-BLG-0977Lb, is in a planetary caustic event, while the other five (OGLE-2018-BLG-0506Lb, OGLE-2018-BLG-0516Lb, OGLE-2019-BLG-1492Lb, KMT-2019-BLG-0253, and KMT-2019-BLG-0953) are revealed by a “dip” in the light curve as the source crosses the host-planet axis on the opposite side of the planet. These subtle signals were missed in previous by-eye searches. The planet-host separations (scaled to the Einstein radius), s, and planet-host mass ratios, q, are, respectively, (s, q × 105) = (0.88, 4.1), (0.96 ± 0.10, 8.3), (0.94 ± 0.07, 13), (0.97 ± 0.07, 18), (0.97 ± 0.04, 4.1), and (0.74, 18), where the “ ± ” indicates a discrete degeneracy. The 11 planets are spread out over the range − 5 < log q < − 3.7 . Together with the two planets previously reported with q ∼ 10−5 from the 2018–2019 nonprime KMT fields, this result suggests that planets toward the bottom of this mass-ratio range may be more common than previously believed.


Author(s):  
Sedighe Sajadian

Abstract We study the Roman sensitivity to exoplanets in the Habitable Zone (HZ). The Roman efficiency for detecting habitable planets is maximized for three classes of planetary microlensing events with close caustic topologies. (a) The events with the lens distances of Dl ≳ 7 kpc, the host lens masses of Mh ≳ 0.6 M⊙. By assuming Jupiter-mass planets in the HZs, these events have q ≲ 0.001 and d ≳ 0.17 (q is their mass ratio and d is the projected planet-host distance on the sky plane normalized to the Einstein radius). The events with primary lenses, Mh ≲ 0.1 M⊙, while their lens systems are either (b) close to the observer with Dl ≲ 1 kpc or (c) close to the Galactic bulge, Dl ≳ 7 kpc. For Jupiter-mass planets in the HZs of the primary lenses, the events in these two classes have q ≳ 0.01, d ≲ 0.04. The events in the class (a) make larger caustics. By simulating planetary microlensing events detectable by Roman, we conclude that the Roman efficiencies for detecting Earth- and Jupiter-mass planets in the Optimistic HZs (OHZs, which is the region between [0.5,  2] AU around a Sun-like star) are $0.01{{\ \rm per\ cent}}$ and $5{{\ \rm per\ cent}}$, respectively. If we assume that one exoplanet orbits each microlens in microlensing events detectable by Roman ( i.e. ∼27000 ), this telescope has the potential to detects 35 exoplanets with the projected planet-host distances in the OHZs with only one having a mass ≲ 10M⊕. According to the simulation, 27 of these exoplanets are actually in the OHZs.


Author(s):  
Sampath Mukherjee ◽  
Léon V E Koopmans ◽  
R Benton Metcalf ◽  
Cresenzo Tortora ◽  
Matthieu Schaller ◽  
...  

Abstract We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of ΛCDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with M* &gt; 1011 M⊙ with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius (≈ 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. −dlog (ρ)/dlog (r) ≈ 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.


2021 ◽  
Vol 501 (4) ◽  
pp. 5021-5028
Author(s):  
C S Kochanek

Abstract The two properties of the radial mass distribution of a gravitational lens that are well constrained by Einstein rings are the Einstein radius RE and ξ2 = REα″(RE)/(1 − κE), where α″(RE) and κE are the second derivative of the deflection profile and the convergence at RE, respectively. However, if there is a tight mathematical relationship between the radial mass profile and the angular structure, as is true of ellipsoids, an Einstein ring can appear to strongly distinguish radial mass distributions with the same ξ2. This problem is beautifully illustrated by the ellipsoidal models in Millon et al. When using Einstein rings to constrain the radial mass distribution, the angular structure of the models must contain all the degrees of freedom expected in nature (e.g. external shear, different ellipticities for the stars and the dark matter, modest deviations from elliptical structure, modest twists of the axes, modest ellipticity gradients, etc.) that work to decouple the radial and angular structures of the gravity. Models of Einstein rings with too few angular degrees of freedom will lead to strongly biased likelihood distinctions between radial mass distributions and very precise but inaccurate estimates of H0 based on gravitational lens time delays.


2020 ◽  
Vol 644 ◽  
pp. A108
Author(s):  
Lyne Van de Vyvere ◽  
Dominique Sluse ◽  
Sampath Mukherjee ◽  
Dandan Xu ◽  
Simon Birrer

Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. However, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the specific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the Einstein radius.


2020 ◽  
Vol 902 (1) ◽  
pp. 44
Author(s):  
J. D. Remolina González ◽  
K. Sharon ◽  
B. Reed ◽  
N. Li ◽  
G. Mahler ◽  
...  

2020 ◽  
Vol 498 (4) ◽  
pp. 6013-6033
Author(s):  
Mario H Amante ◽  
Juan Magaña ◽  
V Motta ◽  
Miguel A García-Aspeitia ◽  
Tomás Verdugo

ABSTRACT Inspired by a new compilation of strong-lensing systems, which consist of 204 points in the redshift range 0.0625 &lt; zl &lt; 0.958 for the lens and 0.196 &lt; zs &lt; 3.595 for the source, we constrain three models that generate a late cosmic acceleration: the ω-cold dark matter model, the Chevallier–Polarski–Linder, and the Jassal–Bagla–Padmanabhan parametrizations. Our compilation contains only those systems with early-type galaxies acting as lenses, with spectroscopically measured stellar velocity dispersions, estimated Einstein radius, and both the lens and source redshifts. We assume an axially symmetric mass distribution in the lens equation, using a correction to alleviate differences between the measured velocity dispersion (σ) and the dark matter halo velocity dispersion (σDM) as well as other systematic errors that may affect the measurements. We have considered different subsamples to constrain the cosmological parameters of each model. Additionally, we generate a mock data of SLS to asses the impact of the chosen mass profile on the accuracy of Einstein radius estimation. Our results show that cosmological constraints are very sensitive to the selected data: Some cases show convergence problems in the estimation of cosmological parameters (e.g. systems with observed distance ratio Dobs &lt; 0.5), others show high values for the χ2 function (e.g. systems with a lens equation Dobs &gt; 1 or high velocity dispersion σ &gt; 276 km s−1). However, we obtained a fiduciary sample with 143 systems, which improves the constraints on each tested cosmological model.


2020 ◽  
Vol 641 ◽  
pp. A105 ◽  
Author(s):  
Cheongho Han ◽  
In-Gu Shin ◽  
Youn Kil Jung ◽  
Doeon Kim ◽  
Jennifer C. Yee ◽  
...  

Aims. We announce the discovery of a microlensing planetary system, in which a sub-Saturn planet is orbiting an ultracool dwarf host. Methods. We detected the planetary system by analyzing the short-timescale (tE ~ 4.4 days) lensing event KMT-2018-BLG-0748. The central part of the light curve exhibits asymmetry due to negative deviations in the rising side and positive deviations in the falling side. Results. We find that the deviations are explained by a binary-lens model with a mass ratio between the lens components of q ~ 2 × 10−3. The short event timescale, together with the small angular Einstein radius, θE ~ 0.11 mas, indicate that the mass of the planet host is very small. The Bayesian analysis conducted under the assumption that the planet frequency is independent of the host mass indicates that the mass of the planet is Mp = 0.18−0.10+0.29 MJ, and the mass of the host, Mh = 0.087−0.047+0.138 M⊙, is near the star–brown dwarf boundary, but the estimated host mass is sensitive to this assumption about the planet hosting probability. High-resolution follow-up observations would lead to revealing the nature of the planet host.


2020 ◽  
Vol 635 ◽  
pp. A27 ◽  
Author(s):  
L. Ciesla ◽  
M. Béthermin ◽  
E. Daddi ◽  
J. Richard ◽  
T. Diaz-Santos ◽  
...  

We serendipitously discovered in the Herschel Reference Survey an extremely bright infrared source with S500 ∼ 120 mJy in the line of sight of the Virgo cluster which we name Red Virgo 4 (RV4). Based on IRAM/EMIR and IRAM/NOEMA detections of the CO(5−4), CO(4−3), and [CI] lines, RV4 is located at a redshift of 4.724, yielding a total observed infrared luminosity of 1.1 ± 0.6 × 1014 L⊙. At the position of the Herschel emission, three blobs are detected with the VLA at 10 cm. The CO(5−4) line detection of each blob confirms that they are at the same redshift with the same line width, indicating that they are multiple images of the same source. In Spitzer and deep optical observations, two sources, High-z Lens 1 (HL1) West and HL1 East, are detected at the center of the three VLA/NOEMA blobs. These two sources are placed at z = 1.48 with X-shooter spectra, suggesting that they could be merging and gravitationally lensing the emission of RV4. HL1 is the second most distant lens known to date in strong lensing systems. Constrained by the position of the three VLA/NOEMA blobs, the Einstein radius of the lensing system is 2.2″ ± 0.2 (20 kpc). The high redshift of HL1 and the large Einstein radius are highly unusual for a strong lensing system. In this paper, we present the insterstellar medium properties of the background source RV4. Different estimates of the gas depletion time yield low values suggesting that RV4 is a starburst galaxy. Among all high-z submillimeter galaxies, this source exhibits one of the lowest L[CI] to LIR ratios, 3.2 ± 0.9 × 10−6, suggesting an extremely short gas depletion time of only 14 ± 5 Myr. It also shows a relatively high L[CI] to LCO(4−3) ratio (0.7 ± 0.2) and low LCO(5−4) to LIR ratio (only ∼50% of the value expected for normal galaxies) hinting at low density of gas. Finally, we discuss the short depletion time of RV4. It can be explained by either a very high star formation efficiency, which is difficult to reconcile with major mergers simulations of high-z galaxies, or a rapid decrease of star formation, which would bias the estimate of the depletion time toward an artificially low value.


2020 ◽  
Vol 494 (3) ◽  
pp. 3156-3165 ◽  
Author(s):  
Anton T Jaelani ◽  
Anupreeta More ◽  
Alessandro Sonnenfeld ◽  
Masamune Oguri ◽  
Cristian E Rusu ◽  
...  

ABSTRACT We report the serendipitous discovery of HSC J0904–0102, a quadruply lensed Lyman-break galaxy (LBG) in the Survey of Gravitationally-lensed Objects in Hyper Suprime-Cam Imaging (SuGOHI). Owing to its point-like appearance, the source was thought to be a lensed active galactic nucleus. We obtained follow-up spectroscopic data with the Gemini Multi-Object Spectrographs on the Gemini South Telescope, which confirmed this to be a lens system. The deflecting foreground galaxy is a typical early-type galaxy at a high redshift of $z_{\ell}=0.957$ with stellar velocity dispersion $\sigma_v=259\pm56$ km s−1. The lensed source is identified as an LBG at $z_{\rm s}=3.403$, based on the sharp drop bluewards of Lyα and other absorption features. A simple lens mass model for the system, assuming a singular isothermal ellipsoid, yields an Einstein radius of $\theta_{\rm Ein}=1.23$ arcsec and a total mass within the Einstein radius of $M_{\rm Ein}=(5.55\pm0.24)\times10^{11}\rm M_{\odot}$ corresponding to a velocity dispersion of $\sigma_{\rm SIE}=283\pm3$ km s−1, which is in good agreement with the value derived spectroscopically. The most isolated lensed LBG image has a magnification of $\sim 6.5$. In comparison with other lensed LBGs and typical $z\sim4$ LBG populations, HSC J0904–0102 is unusually compact, an outlier at $&gt;2\sigma$ confidence. Together with a previously discovered SuGOHI lens, HSC J1152+0047, which is similarly compact, we believe that the HSC survey is extending LBG studies down to smaller galaxy sizes.


Sign in / Sign up

Export Citation Format

Share Document