scholarly journals The First Mid-infrared Detection of HNC in the Interstellar Medium: Probing the Extreme Environment toward the Orion Hot Core

2021 ◽  
Vol 907 (1) ◽  
pp. 51
Author(s):  
Sarah Nickerson ◽  
Naseem Rangwala ◽  
Sean W. J. Colgan ◽  
Curtis DeWitt ◽  
Xinchuan Huang ◽  
...  
2013 ◽  
Author(s):  
Peter Tidemand-Lichtenberg ◽  
Jeppe Seidelin Dam ◽  
Christian Pedersen

2017 ◽  
Vol 23 (4) ◽  
pp. 387-392
Author(s):  
袁方园 YUAN Fang-yuan ◽  
金芹 JIN Qin

2017 ◽  
Vol 607 ◽  
pp. A73 ◽  
Author(s):  
L. Gavilan ◽  
K. C. Le ◽  
T. Pino ◽  
I. Alata ◽  
A. Giuliani ◽  
...  

Context. A multiwavelength study of laboratory carbons with varying degrees of hydrogenation and sp2 hybridization is required to characterize the structure of the carbonaceous carriers of interstellar and circumstellar extinction. Aims. We study the spectral properties of carbonaceous dust analogs from the far-ultraviolet to the mid-infrared and correlate features in both spectral ranges to the aromatic/aliphatic degree. Methods. Analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium have been prepared in the laboratory. These are amorphous hydrogenated carbons (a-C:H), analogs to the diffuse interstellar medium component, and soot particles, analogs to the polyaromatic component. Thin films (d < 100 nm) have been measured in transmission in the vacuum-ultraviolet (VUV; 120–210 nm) within the atmospheric pressure experiment (APEX) chamber of the DISCO beam line at the SOLEIL synchrotron radiation facility. Spectra of these films were further measured through the UV-Vis (210 nm–1 μm) and in the mid-infrared (3–15 μm). Results. Tauc optical gaps, Eg, are derived from the visible spectra. The major spectral features are fitted through the VUV to the mid-infrared to obtain positions, full-widths at half maximum (FWHM), and integrated intensities. These are plotted against the position of the π-π∗ electronic transitions peak. Unidentified or overlapping features in the UV are identified by correlations with complementary infrared data. A correlation between the optical gap and position of the π-π∗ electronic transitions peak is found. The latter is also correlated to the position of the sp3 carbon defect band at ~8 μm, the aromatic C=C stretching mode position at ~6 μm, and the H/C ratio. Conclusions. Ultraviolet and infrared spectroscopy of structurally diverse carbon samples are used to constrain the nanostructural properties of carbon carriers of both circumstellar and interstellar extinction, such as the associated coherent lengths and the size of polyaromatic units. Our study suggests that carriers of the interstellar UV bump should exhibit infrared bands akin to the A/B classes of the aromatic infrared bands, while the circumstellar bump carriers should exhibit bands corresponding to the B/C classes.


2018 ◽  
Vol 861 (2) ◽  
pp. 117 ◽  
Author(s):  
Kathryn Devine ◽  
Johanna Mori ◽  
Christer Watson ◽  
Leonardo Trujillo ◽  
Matthew Hicks

1998 ◽  
Vol 184 ◽  
pp. 47-47
Author(s):  
Kin-Wing Chan ◽  
T. L. Roellig ◽  
T. Onaka ◽  
I. Yamamura ◽  
T. Tanabé

Using the Mid-Infrared (MIRS) on board the Infrared Telescope in Space (IRTS) we obtained the 4.5 to 11.7 μm spectra of the stellar populations and diffuse interstellar medium in the Galactic bulge (l ≈ 8.7°, b ≈ 2.9, 4.0, 4.7, and 5.7°). Below galactic latitute of 4.0° the mid-infrared background spectra in the bulge are similar to the spectrum of M and K giants. The UIR bands (6.2, 7.7, 8.6, and 11.3 μm) are also detected in these regions and they are likely arising from the diffuse interstellar medium in the bulge. Above galactic latitude of 4.0°, the mid-infrared background spectra are similar to the spectrum of those evolved stars with high mass-loss rate detected by IRAS. One likely interpretation is that this background emission arises predominantly from these stars with very low luminosities that have not been detected by IRAS. The main-sequence life time for such low luminosity evolved stars is at least 10 Gyr, even in the metal poor cases. If these low luminosity evolved stars are metal-rich then the age would be much older. Thus, the existence of a large number (~ 75) of such low luminosity evolved stars in a small region (8′ × 8′) in the bulge would have significant impact on our understanding of the stellar content and the age of the Galactic bulge.


CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Lei Dong ◽  
Yingchun Cao ◽  
Nancy P. Sanchez ◽  
Robert J. Griffin ◽  
Frank K. Tittel

Sign in / Sign up

Export Citation Format

Share Document