scholarly journals Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar-mass/2003fg-like Type Ia Supernovae

2021 ◽  
Vol 922 (2) ◽  
pp. 205
Author(s):  
C. Ashall ◽  
J. Lu ◽  
E. Y. Hsiao ◽  
P. Hoeflich ◽  
M. M. Phillips ◽  
...  

Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δm 15(B) < 1.3 mag), and peak absolute B-band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i-band maximum, which peaks after the epoch of the B-band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s−1) in Si ii λ6355 velocities at maximum light with no rapid early velocity decline, and no clear H-band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario.

2020 ◽  
Vol 634 ◽  
pp. A37 ◽  
Author(s):  
M. R. Magee ◽  
K. Maguire ◽  
R. Kotak ◽  
S. A. Sim ◽  
J. H. Gillanders ◽  
...  

Recent studies have shown how the distribution of 56Ni within the ejected material of type Ia supernovae can have profound consequences on the observed light curves. Observations at early times can therefore provide important details on the explosion physics in thermonuclear supernovae, which are poorly constrained. To this end, we present a series of radiative transfer calculations that explore variations in the 56Ni distribution. Our models also show the importance of the density profile in shaping the light curve, which is often neglected in the literature. Using our model set, we investigate the observations that are necessary to determine the 56Ni distribution as robustly as possible within the current model set. We find that this includes observations beginning at least ∼14 days before B-band maximum, extending to approximately maximum light with a relatively high (≲3 day) cadence, and in at least one blue and one red band (such as B and R, or g and r) are required. We compare a number of well-observed type Ia supernovae that meet these criteria to our models and find that the light curves of ∼70–80% of objects in our sample are consistent with being produced solely by variations in the 56Ni distributions. The remaining supernovae show an excess of flux at early times, indicating missing physics that is not accounted for within our model set, such as an interaction or the presence of short-lived radioactive isotopes. Comparing our model light curves and spectra to observations and delayed detonation models demonstrates that while a somewhat extended 56Ni distribution is necessary to reproduce the observed light curve shape, this does not negatively affect the spectra at maximum light. Investigating current explosion models shows that observations typically require a shallower decrease in the 56Ni mass towards the outer ejecta than is produced for models of a given 56Ni mass. Future models that test differences in the explosion physics and detonation criteria should be explored to determine the conditions necessary to reproduce the 56Ni distributions found here.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2020 ◽  
Vol 493 (4) ◽  
pp. 5617-5624
Author(s):  
Doron Kushnir ◽  
Eli Waxman

ABSTRACT The finite time, τdep, over which positrons from β+ decays of 56Co deposit energy in type Ia supernovae ejecta lead, in case the positrons are trapped, to a slower decay of the bolometric luminosity compared to an exponential decline. Significant light-curve flattening is obtained when the ejecta density drops below the value for which τdep equals the 56Co lifetime. We provide a simple method to accurately describe this ‘delayed deposition’ effect, which is straightforward to use for analysis of observed light curves. We find that the ejecta heating is dominated by delayed deposition typically from 600 to 1200 d, and only later by longer lived isotopes 57Co and 55Fe decay (assuming solar abundance). For the relatively narrow 56Ni velocity distributions of commonly studied explosion models, the modification of the light curve depends mainly on the 56Ni mass-weighted average density, 〈ρ〉t3. Accurate late-time bolometric light curves, which may be obtained with JWST far-infrared (far-IR) measurements, will thus enable to discriminate between explosion models by determining 〈ρ〉t3 (and the 57Co and 55Fe abundances). The flattening of light curves inferred from recent observations, which is uncertain due to the lack of far-IR data, is readily explained by delayed deposition in models with $\langle \rho \rangle t^{3} \approx 0.2\, \mathrm{M}_{\odot }\, (10^{4}\, \textrm{km}\, \textrm{s}^{-1})^{-3}$, and does not imply supersolar 57Co and 55Fe abundances.


2005 ◽  
Vol 192 ◽  
pp. 183-188
Author(s):  
Peter A. Milne ◽  
G.Grant Williams

SummaryAt late times, the energy deposition in the ejecta of type Ia supernovae is dominated by the slowing of energetic positrons produced in 56Co → 56Fe decays. Through comparisons of simulations of energy deposition in SN Ia models with observed light curves from supernovae, we study the positron transport and thus the magnetic fields of SNe Ia. In this paper, we summarize the current status of these investigations, emphasizing the observations made of two recent SNe Ia, 1999by and 2000cx.


1999 ◽  
Vol 183 ◽  
pp. 68-68
Author(s):  
Koichi Iwamoto ◽  
Ken'Ichi Nomoto

The large luminosity (MV ≈ −19 ∼ −20) and the homogeneity in light curves and spectra of Type Ia supernovae(SNe Ia) have led to their use as distance indicators ultimately to determine the Hubble constant (H0). However, an increasing number of the observed samples from intermediate- and high-z (z ∼ 0.1 − 1) SN Ia survey projects(Hamuy et al. 1996, Perlmutter et al. 1997) have shown that there is a significant dispersion in the maximum brightness (∼ 0.4 mag) and the brighter-slower correlation between the brightness and the postmaximum decline rate, which was first pointed out by Phillips(1993). By taking the correlation into account, Hamuy et al.(1996) gave an estimate of H0 within the error bars half as much as previous ones.


2015 ◽  
Vol 91 (12) ◽  
Author(s):  
Ivan Karpikov ◽  
Maxim Piskunov ◽  
Anton Sokolov ◽  
Sergey Troitsky

Sign in / Sign up

Export Citation Format

Share Document