band maximum
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 6)

2021 ◽  
Vol 922 (2) ◽  
pp. 205
Author(s):  
C. Ashall ◽  
J. Lu ◽  
E. Y. Hsiao ◽  
P. Hoeflich ◽  
M. M. Phillips ◽  
...  

Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δm 15(B) < 1.3 mag), and peak absolute B-band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i-band maximum, which peaks after the epoch of the B-band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s−1) in Si ii λ6355 velocities at maximum light with no rapid early velocity decline, and no clear H-band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4189
Author(s):  
R. Lewandków ◽  
P. Mazur ◽  
A. Trembułowicz ◽  
A. Sabik ◽  
R. Wasielewski ◽  
...  

This paper concerns research on magnesium oxide layers in terms of their potential use as a gate material for SiC MOSFET structures. The two basic systems of MgO/SiC(0001) and MgO/graphite/SiC(0001) were deeply investigated in situ under ultrahigh vacuum (UHV). In both cases, the MgO layers were obtained by a reactive evaporation method. Graphite layers terminating the SiC(0001) surface were formed by thermal annealing in UHV. The physicochemical properties of the deposited MgO layers and the systems formed with their participation were determined using X-ray and UV photoelectron spectroscopy (XPS, UPS). The results confirmed the formation of MgO compounds. Energy level diagrams were constructed for both systems. The valence band maximum of MgO layers was embedded deeper on the graphitized surface than on the SiC(0001).


2021 ◽  
Vol 502 (3) ◽  
pp. 4112-4124
Author(s):  
Umut Burgaz ◽  
Keiichi Maeda ◽  
Belinda Kalomeni ◽  
Miho Kawabata ◽  
Masayuki Yamanaka ◽  
...  

ABSTRACT Photometric and spectroscopic observations of Type Ia supernova (SN) 2017fgc, which cover the period from −12 to + 137 d since the B-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, Δm15(B)true  = 1.10 ± 0.10 mag. Spectroscopically, it belongs to the high-velocity (HV) SNe Ia group, with the Si ii λ6355 velocity near the B-band maximum estimated to be 15 200 ± 480 km s−1. At the epochs around the near-infrared secondary peak, the R and I bands show an excess of ∼0.2-mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the colour is consistent with the fiducial SN colour. This might indicate that the excess is attributed to the bolometric luminosity, not in the colour. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun-Chang Liu ◽  
Chen-Min Dai ◽  
Yimeng Min ◽  
Yi Hou ◽  
Andrew H. Proppe ◽  
...  

AbstractIn lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C.


Nanoscale ◽  
2021 ◽  
Author(s):  
Dan-Dong Wang ◽  
Xin-Gao Gong ◽  
Jihui Yang

Interlayer interactions play important roles in manipulating the electronic properties of layered semiconductors. One common mechanism is that the valance band maximum (VBM) and the conduction band minimum (CBM) in...


Author(s):  
Jonghyun Han ◽  
Shunsuke Yagi ◽  
Hirokazu Takeuchi ◽  
Masanobu Nakayama ◽  
Tetsu Ichitsubo

The catalytic activity of the spinel oxide for the oxidative electrolyte decomposition depends on the valence band maximum (VBM) of the spinel oxide. The lower the VBM, the higher the potential at which the oxidative electrolyte decomposition starts.


2020 ◽  
Vol 67 (4) ◽  
pp. 1118-1123
Author(s):  
Alexander Chebotarev ◽  
Anastasiia Klochkova ◽  
Vitaliy Dubovyi ◽  
Denys Snigur

A novel dispersive liquid-liquid semi-microextraction (DLLsME) procedure for copper(II) preconcentration is proposed. The system containing copper(II) and 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride (DHDPhB), after addition a mixture of chloroform and methanol becomes cloudy and the formation of the organic phase was observed immediately. The optimal conditions of DLLsME were found to be: pH 5, absorption band maximum was 570 nm, 1 cm3 of 1 × 10–3 mol/dm3 of DHDPhB, and mixed extractant containing 1 cm3 of chloroform and 1 cm3 of methanol. Under optimal conditions, the calibration plot was linear in the range of copper(II) concentration 4.32–65 μg/dm3 and the limit of detection was 1.29 μg/dm3. The rocks and tap water samples were successfully analyzed according to the suggested procedure with RSD no more than 4.9%.


2020 ◽  
Vol 30 (3) ◽  
Author(s):  
Van Quang Tran

Bi2O2Se has been known as a promising thermoelectric material with low thermal conductivity. Detail understanding of band structure is therefore important. In this report, by employing first-principles density functional theory and using primitive unit cell, the electronic band structure of Bi2O2Se is examined. The compound is found to be a narrow band gap semiconductor with very flat bands at the valence band maximum (VBM). Nevertheless, the curvature of energy surface at VBM is directional dependent. Overall, the heavy bands at VBM do not reduce drastically electrical conductivity. It is demonstrated by utilizing the solution of Boltzmann Transport Equation to compute the transport coefficients, i.e. the Seebeck coefficient, the electrical conductivity thereby the power factor and the electronic thermal conductivity. The figure of merit of the compound is also estimated and discussed. The p-type doping is suggested increasing the thermoelectric performance of the compound. All results are in good agreement with experiments and calculations reported earlier.


Sign in / Sign up

Export Citation Format

Share Document