scholarly journals AGN STORM 2. I. First results: A Change in the Weather of Mrk 817

2021 ◽  
Vol 922 (2) ◽  
pp. 151
Author(s):  
Erin Kara ◽  
Missagh Mehdipour ◽  
Gerard A. Kriss ◽  
Edward M. Cackett ◽  
Nahum Arav ◽  
...  

Abstract We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C iv and Lyα lags suggest that the accretion disk extends beyond the UV broad-line region.

2006 ◽  
pp. 1-11 ◽  
Author(s):  
L.C. Popovic

In this paper a discussion of kinematics and physics of the Broad Line Region (BLR) is given. The possible physical conditions in the BLR and problems in determination of the physical parameters (electron temperature and density) are considered. Moreover, one analyses the geometry of the BLR and the probability that (at least) a fraction of the radiation in the Broad Emission Lines (BELs) originates from a relativistic accretion disk.


1987 ◽  
Vol 121 ◽  
pp. 161-167
Author(s):  
B.M. Peterson

Recent observations of spectral variability in active galactic nuclei have established the connection between the broad emission-line and optical continuum flux changes. The inferred size of the broad-line region is at least an order of magnitude smaller than conventional estimates based on photoionization models, which leads to new conclusions about the nature of the broad-line region.


2019 ◽  
Vol 490 (1) ◽  
pp. 124-134
Author(s):  
Anwesh Majumder ◽  
Kaustav Mitra ◽  
Ritaban Chatterjee ◽  
C M Urry ◽  
C D Bailyn ◽  
...  

ABSTRACT We present cross-correlation studies of γ-ray (0.1–300 GeV), X-ray (0.2–10 keV), and optical (R band) variability of a sample of 26 blazars during 2008–2016. The light curves are from Fermi-LAT, Swift-XRT, and the Yale-SMARTS blazar monitoring program. We stack the discrete cross-correlation functions of the blazars such that the features that are consistently present in a large fraction of the sample become more prominent in the final result. We repeat the same analysis for two subgroups, namely, low synchrotron peaked (LSP) and high synchrotron peaked (HSP) blazars. We find that, on average, the variability at multiple bands is correlated, with a time lag consistent with zero in both subgroups. We describe this correlation with a leptonic model of non-thermal emission from blazar jets. By comparing the model results with those from the actual data, we find that the inter-band cross-correlations are consistent with an emission region of size 0.1 pc within the broad-line region for LSP blazars. We rule out large changes of magnetic field (>0.5 Gauss) across the emission region or small values of magnetic field (e.g., 0.2 Gauss) for this population. We also find that the observed variability of the HSP blazars can be explained if the emission region is much larger than the distance to the broad-line region from the central black hole.


2009 ◽  
Vol 53 (7-10) ◽  
pp. 121-127 ◽  
Author(s):  
E. Bon ◽  
N. Gavrilović ◽  
G. La Mura ◽  
L.Č. Popović

1997 ◽  
Vol 159 ◽  
pp. 260-261
Author(s):  
Michael R. Corbin ◽  
Todd A. Boroson

AbstractComparison of the emission-line and continuum parameters of 48 low-redshift QSOs reveals the asymmetry of the C IV λ1549 broad emission line to be strongly correlated with ultraviolet continuum luminosity, such that increasing luminosity produces increasing redward asymmetry. A similar correlation has been found for broad Hβ. Redward profile asymmetries can be modeled as the result of the gravitational redshift of line photons from the very broad-line region (VBLR) by 109–1010M⊙ black holes, but blueward profile asymmetries require a competing effect such as electron scattering.


1994 ◽  
Vol 93 ◽  
pp. 73 ◽  
Author(s):  
Edward I. Rosenblatt ◽  
Matthew A. Malkan ◽  
Wallace L. W. Sargent ◽  
Anthony C. S. Readhead

2018 ◽  
Vol 865 (2) ◽  
pp. 97 ◽  
Author(s):  
J. M. Miller ◽  
E. Cackett ◽  
A. Zoghbi ◽  
D. Barret ◽  
E. Behar ◽  
...  

2013 ◽  
Vol 436 (2) ◽  
pp. 1588-1594 ◽  
Author(s):  
M. Sanfrutos ◽  
G. Miniutti ◽  
B. Agís-González ◽  
A. C. Fabian ◽  
J. M. Miller ◽  
...  

2018 ◽  
Vol 619 ◽  
pp. A168 ◽  
Author(s):  
W. Kollatschny ◽  
M. W. Ochmann ◽  
M. Zetzl ◽  
M. Haas ◽  
D. Chelouche ◽  
...  

Aims. A strong X-ray outburst was detected in HE 1136-2304 in 2014. Accompanying optical spectra revealed that the spectral type has changed from a nearly Seyfert 2 type (1.95), classified by spectra taken 10 and 20 years ago, to a Seyfert 1.5 in our most recent observations. We seek to investigate a detailed spectroscopic campaign on the spectroscopic properties and spectral variability behavior of this changing look AGN and compare this to other variable Seyfert galaxies. Methods. We carried out a detailed spectroscopic variability campaign of HE 1136-2304 with the 10 m Southern African Large Telescope (SALT) between 2014 December and 2015 July. Results. The broad-line region (BLR) of HE 1136-2304 is stratified with respect to the distance of the line-emitting regions. The integrated emission line intensities of Hα, Hβ, He I λ5876, and He II λ4686 originate at distances of 15.0−3.8+4.2, 7.5−5.7+4.6, 7.3−4.4+2.8, and 3.0−3.7+5.3 light days with respect to the optical continuum at 4570 Å. The variability amplitudes of the integrated emission lines are a function of distance to the ionizing continuum source as well. We derived a central black hole mass of 3.8 ± 3.1 × 107 M⊙ based on the linewidths and distances of the BLR. The outer line wings of all BLR lines respond much faster to continuum variations indicating a Keplerian disk component for the BLR. The response in the outer wings is about two light days shorter than the response of the adjacent continuum flux with respect to the ionizing continuum flux. The vertical BLR structure in HE 1136-2304 confirms a general trend that the emission lines of narrow line active galactic nuclei (AGNs) originate at larger distances from the midplane in comparison to AGNs showing broader emission lines. Otherwise, the variability behavior of this changing look AGN is similar to that of other AGN.


Sign in / Sign up

Export Citation Format

Share Document