scholarly journals Machine-learning Interpretation of the Correlation between Infrared Emission Features of Interstellar Polycyclic Aromatic Hydrocarbons

2021 ◽  
Vol 922 (2) ◽  
pp. 101
Author(s):  
Zhisen Meng ◽  
Xiaosi Zhu ◽  
Péter Kovács ◽  
Enwei Liang ◽  
Zhao Wang

Abstract Supervised machine-learning models are trained with various molecular descriptors to predict infrared (IR) emission spectra of interstellar polycyclic aromatic hydrocarbons. We demonstrate that a feature importance analysis based on the random forest algorithm can be utilized to explore the physical correlation between emission features. Astronomical correlations between IR bands are analyzed as examples of demonstration by finding the common molecular fragments responsible for different bands, which improves the current understanding of the long-observed correlations. We propose a way to quantify the band correlation by measuring the similarity of the feature importance arrays of different bands, by which a correlation map is obtained for emissions in the out-of-plane bending region. Moreover, a comparison between the predictions using different combinations of descriptors underscores the strong prediction power of the extended-connectivity molecular fingerprint, and shows that the combinations of multiple descriptors of other types in general lead to improved predictivity.

2020 ◽  
Vol 494 (1) ◽  
pp. 642-664 ◽  
Author(s):  
A Maragkoudakis ◽  
E Peeters ◽  
A Ricca

ABSTRACT We present a new method to accurately describe the ionization fraction and the size distribution of polycyclic aromatic hydrocarbons (PAHs) within astrophysical sources. To this purpose, we have computed the mid-infrared emission spectra of 308 PAH molecules of varying sizes, symmetries, and compactness, generated in a range of radiation fields. We show that the intensity ratio of the solo CH out-of-plane bending mode in PAH cations and anions (referred to as the ‘11.0’ μm band, falling in the 11.0–11.3 μm region for cations and anions) to their 3.3 μm emission scales with PAH size, similarly to the scaling of the 11.2/3.3 ratio with the number of carbon atoms (NC) for neutral molecules. Among the different PAH emission bands, it is the 3.3 μm band intensity that has the strongest correlation with NC, and drives the reported PAH intensity ratio correlations with NC for both neutral and ionized PAHs. The 6.2/7.7 intensity ratio, previously adopted to track PAH size, shows no evident scaling with NC in our large sample. We define a new diagnostic grid space to probe PAH charge and size, using the (11.2 + 11.0)/7.7 and (11.2 + 11.0)/3.3 PAH intensity ratios, respectively. We demonstrate the application of the (11.2 + 11.0)/7.7–(11.2 + 11.0)/3.3 diagnostic grid for galaxies M82 and NGC 253, for the planetary nebula NGC 7027, and the reflection nebulae NGC 2023 and NGC 7023. Finally, we provide quantitative relations for PAH size determination depending on the ionization fraction of the PAHs and the radiation field they are exposed to.


1989 ◽  
Vol 135 ◽  
pp. 129-140
Author(s):  
L. J. Allamandola

The infrared evidence which supports the PAH hypothesis is briefly summarized. Rather than presenting a general discussion of these assignments, this paper focuses on the spectroscopic issues raised by recent observational and experimental developments. These issues include: the position and profile of the “1310” cm−1(“7.7” μm) feature, the position and intensities of the bands in the 910-710 cm−1(11-14 μm) region, the newly detected 1900 cm−1(5.3 μm) band, and the spatial and spectral variations in the 3000 cm−1(3 μm) region as well as in the 12 and 25 μm IRAS bands. It is concluded that the infrared evidence for interstellar PAHs and PAH-related species is compelling.


2011 ◽  
Vol 7 (S283) ◽  
pp. 462-463
Author(s):  
Ryou Ohsawa ◽  
Takashi Onaka ◽  
Itsuki Sakon ◽  
Issei Yamamura ◽  
Mikako Matsuura ◽  
...  

AbstractWe investigate the infrared emission bands from Polycyclic Aromatic Hydrocarbons (PAHs) in Galactic planetary nebulae (PNe). PAHs in PNe are assumed to be in transition from circumstellar to interstellar PAHs. We select 15 evolved PNe taking account of effective stellar temperatures and obtain infrared spectra of PNe from AKARI (2.5–5 μm) and Spitzer (5–14 μm) observations. Their evolutionary phase is estimated using [SIV]10.51/[NeII]12.81. We find that the near-infrared PAH bands are significantly enhanced along with stellar evolution sequence. We also find that the ratio of 3.4 to 3.3 μm bands is enhanced. The enhancement might indicate some chemical processing, such as hydrogenation, on small PAHs.


Sign in / Sign up

Export Citation Format

Share Document