scholarly journals Gravitational Self-force Errors of Poisson Solvers on Adaptively Refined Meshes

2021 ◽  
Vol 254 (1) ◽  
pp. 12
Author(s):  
Hanjue Zhu ◽  
Nickolay Y. Gnedin
Keyword(s):  
2014 ◽  
Vol 89 (12) ◽  
Author(s):  
Matthew J. S. Beach ◽  
Eric Poisson ◽  
Bernhard G. Nickel

2015 ◽  
Vol 27 (04) ◽  
pp. 1550033 ◽  
Author(s):  
Mahdi Halabian ◽  
Alireza Karimi ◽  
Borhan Beigzadeh ◽  
Mahdi Navidbakhsh

Abdominal aortic aneurysm (AAA) is a degenerative disease defined as the abnormal ballooning of the abdominal aorta (AA) wall which is usually caused by atherosclerosis. The aneurysm grows larger and eventually ruptures if it is not diagnosed and treated. Aneurysms occur mostly in the aorta, the main artery of the chest and abdomen. The aorta carries blood flow from the heart to all parts of the body, including the vital organs, the legs, and feet. The objective of the present study is to investigate the combined effects of aneurysm and curvature on flow characteristics in S-shaped bends with sweep angle of 90° at Reynolds number of 900. The fluid mechanics of blood flow in a curved artery with abnormal aortic is studied through a mathematical analysis and employing Cosmos flow simulation. Blood is modeled as an incompressible non-Newtonian fluid and the flow is assumed to be steady and laminar. Hemodynamic characteristics are analyzed. Grid independence is tested on three successively refined meshes. It is observed that the abrupt expansion induced by AAA results in an immensely disturbed regime. The results may have implications not only for understanding the mechanical behavior of the blood flow inside an aneurysm artery but also for investigating the mechanical behavior of the blood flow in different arterial diseases, such as atherosclerosis.


2018 ◽  
Vol 98 (10) ◽  
Author(s):  
Donato Bini ◽  
Thibault Damour ◽  
Andrea Geralico ◽  
Chris Kavanagh ◽  
Maarten van de Meent

Sign in / Sign up

Export Citation Format

Share Document