scholarly journals Study of Momentum Diffusion with the Effect of Adiabatic Focusing

2021 ◽  
Vol 257 (2) ◽  
pp. 44
Author(s):  
J. F. Wang ◽  
G. Qin

Abstract The momentum diffusion of charged energetic particles is an important mechanism of the transport process in astrophysics, the physics of fusion devices, and laboratory plasmas. In addition to the momentum diffusion term for a uniform field, we obtain an additional momentum diffusion term due to the focusing effect of the large-scale magnetic field. After evaluating the coefficient of the additional momentum diffusion term, we find that it is determined by the sign of the focusing characteristic length and the cross helicity of the turbulent magnetic field. Furthermore, by deriving the mean momentum change rate contributed from the additional momentum diffusion term, we identify that the focused field provides an additional momentum loss or gain process.

1991 ◽  
Vol 130 ◽  
pp. 190-192
Author(s):  
V.N. Krivodubskij ◽  
L.L. Kichatinov

AbstractThe influence of rotation on the transfer of the mean magnetic field of the Sun, caused by the radial inhomogeneity of the solar turbulent plasma density, is investigated. It turns out that the transfer directions of the poloidal and toroidal magnetic fields do not coincide.


1993 ◽  
Vol 157 ◽  
pp. 49-50
Author(s):  
V.N. Krivodubskij

The mean magnetic field transport due to inhomogeneity of the turbulence intensity is considered taking the field back reaction on motion into account. In spite of the magnetic quenching, the downward diamagnetic pumping is still powerful enough to keep the fields of 3 to 4 kG strength near the SCZ base against the magnetic buoyancy.


2020 ◽  
Vol 492 (4) ◽  
pp. 5582-5591 ◽  
Author(s):  
V N Obridko ◽  
D D Sokoloff ◽  
B D Shelting ◽  
A S Shibalova ◽  
I M Livshits

ABSTRACT We consider variations of the dipole and quadrupole components of the solar large-scale magnetic field. Both axial and equatorial dipoles exhibit a systematic decrease during the past four cycles, in accordance with the general decrease of solar activity. The transition of the pole of a dipole from the polar region to the midlatitudes occurs rather quickly, so that the longitude of the pole changes little. With time, however, this inclined dipole region shifts to larger longitudes, which suggests an acceleration of dipole rotation. The mean rotation rate exceeds the Carrington velocity by 0.6 per cent. The behaviour of a quadrupole differs dramatically. Its decrease over the last four cycles was much smaller than that of the dipole moment. The ratio of the quadrupole and dipole moments has increased for four cycles more than twice, in contrast to sunspot numbers, which displayed a twofold decrease for the same time interval. Regarding quadrupole rotation, the mean longitude of the poles of one sign decreased by 600° over four cycles, which suggests that the mean rotation rate was lower than the Carrington velocity by 0.28 per cent. We do not, however, see any conclusive evidence that, in the period under discussion, a mode of quadrupole symmetry was excited in the Sun along with the dipole mode.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2013 ◽  
Vol 9 (S302) ◽  
pp. 146-147
Author(s):  
Sudeshna Boro Saikia ◽  
Sandra V. Jeffers ◽  
Pascal Petit ◽  
Stephen Marsden ◽  
Julien Morin ◽  
...  

AbstractHD 206860 is a young planet (HN Peg b) hosting star of spectral type G0V and it has a potential debris disk around it. In this work we measure the longitudinal magnetic field of HD 206860 using spectropolarimetric data and we measure the chromospheric activity using Ca II H&K, H-alpha and Ca II infrared triplet lines.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


Sign in / Sign up

Export Citation Format

Share Document