radiative feedback
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 32)

H-INDEX

38
(FIVE YEARS 3)

Author(s):  
Sagnik Dey ◽  
Rohit Kumar Choudhary ◽  
Abhishek Upadhayay ◽  
S. K. Dash

Abstract Heat stress is one of the leading natural causes of mortality in India. Aerosols can potentially impact heat stress by modulating the meteorological conditions via radiative feedback. However, a quantitative understanding of such impact is lacking. Here using a chemical transport model WRF-Chem, we showed that high aerosol loading in India was able to mask the heat stress (quantified by the Wet Bulb Globe Temperature, WBGT) by 0.3-1.5C in 2010 with a regional heterogeneity across the major climate zones in India. However, the cooling effect of aerosol direct radiative forcing is partially compensated by an increase in humidity. To understand the potential impact of air quality improvement (i.e., reducing aerosol load) on heat stress in the future, WBGT was projected for 2030 under two contrasting aerosol emission pathways. We found that the heat stress would increase by >0.75C in all the climate zones in India except in the montane zone under the RCP4.5 scenario with a bigger margin of increase in the mitigation emission pathway relative to the baseline emission pathway. On the contrary, under the RCP8.5 scenario, the heat stress is projected to increase in limited regions such as the tropical wet and dry, north-eastern part of the humid subtropical, tropical wet, and semi-arid climate zone in peninsular India. Our results demonstrate that aerosols modulate heat stress, and therefore, the heat stress projections in India and anywhere else with high aerosol loading should consider aerosol radiative feedback.


2021 ◽  
pp. 1-68
Author(s):  
Robert C. J. Wills ◽  
Kyle C. Armour ◽  
David S. Battisti ◽  
Cristian Proistosescu ◽  
Luke A. Parsons

AbstractInternal climate variability confounds estimates of the climate response to forcing but offers an opportunity to examine the dynamics controlling Earth’s energy budget. This study analyzes the time-evolving impact of modes of low-frequency internal variability on global-mean surface temperature (GMST) and top-of-atmosphere (TOA) radiation in pre-industrial control simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show that the slow modes of variability with the largest impact on decadal GMST anomalies are focused in high-latitude ocean regions, where they have a minimal impact on global TOA radiation. When these regions warm, positive shortwave cloud and sea ice-albedo feedbacks largely cancel the negative feedback of outgoing longwave radiation, resulting in a weak net radiative feedback. As a consequence of the weak net radiative feedback, less energy is required to sustain these long-lived temperature anomalies. In contrast to these weakly radiating high-latitude modes, the El Niño-Southern Oscillation (ENSO) has a large impact on the global energy budget, such that it remains the dominant influence on global TOA radiation out to decadal and longer timescales, despite its primarily interannual timescale. These results show that on decadal and longer timescales, different processes control internal variability in GMST than control internal variability in global TOA radiation. The results are used to quantify the impact of low-frequency internal variability and ENSO on estimates of climate sensitivity from historical GMST and TOA-radiative-imbalance anomalies.


2021 ◽  
Vol 502 (3) ◽  
pp. 3638-3645
Author(s):  
W Ishibashi ◽  
A C Fabian ◽  
N Arakawa

ABSTRACT The actual mechanism(s) powering galactic outflows in active galactic nuclei (AGNs) is still a matter of debate. At least two physical models have been considered in the literature: wind shocks and radiation pressure on dust. Here, we provide a first quantitative comparison of the AGN radiative feedback scenario with observations of galactic outflows. We directly compare our radiation pressure-driven shell models with the observational data from the most recent compilation of molecular outflows on galactic scales. We show that the observed dynamics and energetics of galactic outflows can be reproduced by AGN radiative feedback, with the inclusion of radiation trapping and/or luminosity evolution. The predicted scalings of the outflow energetics with AGN luminosity can also quantitatively account for the observational scaling relations. Furthermore, sources with both ultrafast and molecular outflow detections are found to be located in the ‘forbidden’ region of the NH–λ plane. Overall, an encouraging agreement is obtained over a wide range of AGN and host galaxy parameters. We discuss our results in the context of recent observational findings and numerical simulations. In conclusion, AGN radiative feedback is a promising mechanism for driving galactic outflows that should be considered, alongside wind feedback, in the interpretation of future observational data.


2021 ◽  
Vol 502 (2) ◽  
pp. 2198-2219
Author(s):  
Xianyu Tan ◽  
Adam P Showman

ABSTRACT Brown dwarfs, planetary-mass objects and directly imaged giant planets exhibit significant observational evidence for active atmospheric circulation, raising critical questions about mechanisms driving the circulation, its fundamental nature and time variability. Our previous work has demonstrated the crucial role of cloud radiative feedback on driving a vigorous atmospheric circulation using local models that assume a Cartesian geometry and constant Coriolis parameters. In this study, we extend the models to a global geometry and explore properties of the global dynamics. We show that, under relatively strong dissipation in the bottom layers of the model, horizontally isotropic vortices are prevalent at mid-to-high latitudes while large-scale zonally propagating waves are dominant at low latitudes near the observable layers. The equatorial waves have both eastward and westward phase speeds, and the eastward components with typical velocities of a few hundred  m s−1 usually dominate the equatorial time variability. Lightcurves of the global simulations show variability with amplitudes from 0.5 per cent to a few percent depending on the rotation period and viewing angle. The time evolution of simulated lightcurves is critically affected by the equatorial waves, showing wave beating effects and differences in the lightcurve periodicity to the intrinsic rotation period. The vertical extent of clouds is the largest at the equator and decreases poleward due to the increasing influence of rotation with increasing latitude. Under weaker dissipation in the bottom layers, strong and broad zonal jets develop and modify wave propagation and lightcurve variability. Our modelling results help to qualitatively explain several features of observations of brown dwarfs and directly imaged giant planets, including puzzling time evolution of lightcurves, a slightly shorter period of variability in IR than in radio wavelengths, and the viewing angle dependence of variability amplitude and IR colors.


2020 ◽  
Vol 905 (2) ◽  
pp. 123
Author(s):  
Kunyang Li ◽  
Tamara Bogdanović ◽  
David R. Ballantyne

2020 ◽  
Vol 904 (2) ◽  
pp. 194
Author(s):  
Patrick Hennebelle ◽  
Benoît Commerçon ◽  
Yueh-Ning Lee ◽  
Gilles Chabrier

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1218
Author(s):  
Min-Ah Sun ◽  
Hyun Min Sung ◽  
Jisun Kim ◽  
Kyung-On Boo ◽  
Yoon-Jin Lim ◽  
...  

Climate sensitivity and feedback processes are important for understanding Earth’s system response to increased CO2 concentration in the atmosphere. Many modelling groups that contribute to Coupled Model Intercomparison Project phase 6 (CMIP6) have reported a larger equilibrium climate sensitivity (ECS) with their models compared to CMIP5 models. This consistent result is also found in the Korea Meteorological Administration Advanced Community Earth System model (K-ACE). Idealized climate simulation is conducted as an entry card for CMIP6 to understand Earth’s system response in new coupled models and compared to CMIP5 models. The ECS in the K-ACE is 4.83 K, which is higher than the range (2.1–4.7 K) of CMIP5 models in sensitivity to CO2 change and higher bound (1.8–5.6 K) of CMIP6 models. The radiative feedback consists of clear-sky and cloud radiative feedback. Clear-sky feedback of K-ACE is similar to CMIP5 models whereas cloud feedback of K-ACE is more positive. The result is attributable for strong positive shortwave cloud radiative effect (CRE) feedback associated with reduced low-level cloud cover at mid latitude in both hemispheres. Despite the cancellations in strong negative long wave CRE feedback with the changes in high-level clouds in the tropics, shortwave CRE has a dominant effect in net CRE. Detailed understanding of cloud feedback and cloud properties needs further study.


Sign in / Sign up

Export Citation Format

Share Document