scholarly journals Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

2011 ◽  
Vol 107 (25) ◽  
Author(s):  
T. Heinemann ◽  
J. C. McWilliams ◽  
A. A. Schekochihin
Author(s):  
THARCISYO DUARTE ◽  
J. D. DO NASCIMENTO

The study of solar twins offers a unique opportunity to investigating the solar magnetic field over longer timescales. Supported by the new generation of stellar spectropolarimeters (ESPaDOnS@CFHT, NARVAL@TBL), we are able to measure the large-scale magnetic field solar twins. Studying the behavior of solar magnetic field, we are able to learn about the mechanisms of magnetic field generation in the dynamo process. Besides convection, various physical parameters affect the dynamo operation, in particular the rotation and mass. We collected signature of the stellar large-scale magnetic field for solar twins and we present here a analysis of seven candidates.


2012 ◽  
Vol 746 (2) ◽  
pp. L14 ◽  
Author(s):  
E. P. Alves ◽  
T. Grismayer ◽  
S. F. Martins ◽  
F. Fiúza ◽  
R. A. Fonseca ◽  
...  

1993 ◽  
Vol 157 ◽  
pp. 237-241
Author(s):  
M. Hnatich

The large-scale magnetic field generation by the turbulent motion energy, known as turbulent dynamo [1], is perspective candidate to explain the observed stationary magnetic fields of cosmic objects.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 360-364
Author(s):  
Rim Fares

AbstractIn Sun-like stars, magnetic fields are generated in the outer convective layers. They shape the stellar environment, from the photosphere to planetary orbits. Studying the large-scale magnetic field of those stars enlightens our understanding of the field properties and gives us observational constraints for field generation dynamo models. It also sheds light on how “normal” the Sun is among Sun-like stars. In this contribution, I will review the field properties of Sun-like stars, focusing on solar twins and planet hosting stars. I will discuss the observed large-scale magnetic cycles, compare them to stellar activity cycles, and link that to what we know about the Sun. I will also discuss the effect of large-scale stellar fields on exoplanets, exoplanetary emissions (e.g. radio), and habitability.


2021 ◽  
Vol 254 ◽  
pp. 02015
Author(s):  
Olga V. Sheremetyeva ◽  
Anna N. Godomskaya

The low-mode model αΩ-dynamo is used in this paper to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. In the framework of those model the α-effect intensity is regulated by the process that is included in the magnetohydrodynamic system (MHD-system) as an additive correction as a functional Z(t) depended on the magnetic field energy. Function that determines damped oscillations with variable damping frequency and constant damping coefficient, taken equal to one, is selected as kernel J(t) of functional Z(t). The research of the behavior of the magnetic field is carried out on large time scales, therefore, a rescaled and dimensionless MHD-system with the unit of time iquel the time of the magnetic field dissipation (104 years) for numerical calculations is used. The control parameters of the system are the Reynolds number and the amplitude of the α-effect, that include information about the large-scale and turbulent generators, respectively. Numerical simulation of the magnetic field generation modes was carried out for the values of the damping coefficient b = 1 and frequency a = 0.1, 0.5, 1, 5, 10. According to the results of numerical simulation, an increase in the values of the damping frequency, when the damping coefficient is equal to one, is characterized by a decrease in the inhibitory effect of the process Z(t) on the α-effect and an increase in the region of divergence of the magnetic field on the phase plane of the control parameters. In a comparative analysis with the results of the authors’ work, where the change of the α-effect intensity was determined by the function Z(t) with an exponential kernel and the same value of the damping coefficient, the following differences were noted: an increase in oscillations in both a magnetic and a velocity fields, the appearance of a chaotic regime of magnetic field generation at the value of the damping frequency equal to one, and also insignificant narrowing of the region of α-effect suppression at values of the damping frequency increasing to one.


Sign in / Sign up

Export Citation Format

Share Document