scholarly journals Core Mass Function of a Single Giant Molecular Cloud Complex with ∼10,000 Cores

2021 ◽  
Vol 918 (1) ◽  
pp. L4
Author(s):  
Yue Cao ◽  
Keping Qiu ◽  
Qizhou Zhang ◽  
Yuwei Wang ◽  
Yuanming Xiao
2019 ◽  
Vol 628 ◽  
pp. A110 ◽  
Author(s):  
F. Massi ◽  
A. Weiss ◽  
D. Elia ◽  
T. Csengeri ◽  
E. Schisano ◽  
...  

Context. The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims. We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods. We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size ~19′′2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 M⊙. Results. We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1–6 pc is also found, hinting at fractionation of magnetised, turbulent gas.


2020 ◽  
Vol 635 ◽  
pp. A34 ◽  
Author(s):  
V. Könyves ◽  
Ph. André ◽  
D. Arzoumanian ◽  
N. Schneider ◽  
A. Men’shchikov ◽  
...  

We present a detailed study of the Orion B molecular cloud complex (d ~ 400 pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70 to 500 μm as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC 2023 and 2024, NGC 2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490–804 (~28−45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be tpreOrionB = 1.7−0.6+0.8Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5 M⊙ (in dN/dlogM format) and is consistent with a power-law with logarithmic slope −1.27 ± 0.24 at the high-mass end, compared to the Salpeter slope of − 1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value AVbg ~ 7 mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at AVbg < 5 and a regime with higher, roughly constant CFE at AVbg ≳ 10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above AVbg ≳ 7 mag. About 60–80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.


2018 ◽  
Vol 14 (S345) ◽  
pp. 328-329
Author(s):  
Gabor I. Herbst-Kiss ◽  
Joao Alves

AbstractThe initial mass function (IMF) is a profoundly studied subject, however its origin is still unclear and heavily disputed. The Core Mass Function (CMF) has a remarkable resemblance to a shifted IMF along the mass axis of a factor of 3. This CMF has been observed amongst others in the Pipe Nebula, a calm molecular cloud at approximately 130 pc. We study the origin of the CMF under the assumption that collisions and merging of prestellar cores shape the CMF. We present our preliminary results of core collisions for the well known FeSt 1-457.


2009 ◽  
Vol 702 (1) ◽  
pp. 352-367 ◽  
Author(s):  
Adam K. Leroy ◽  
Alberto Bolatto ◽  
Caroline Bot ◽  
Charles W. Engelbracht ◽  
Karl Gordon ◽  
...  

1987 ◽  
Vol 115 ◽  
pp. 170-171
Author(s):  
Ryosuke Miyawaki ◽  
Masahiko Hayashi ◽  
Tetsuo Hasegawa

We have observed the CS (J = 1-0), C34S (J = 1-0) and H51α emission toward the W49A molecular cloud complex in an area of 3'x 2′ (α x δ) with an angular resolution of 33″. The CS emitting region is 100″ x 80″ or 6.7 pc x 5.4 pc (α x δ) at the half maximum level. Although the CO emission is self-absorbed due to the foreground cold gas, the CS optical depth of the foreground gas is found to be small. Therefore, the two CS peaks at VLSR = 4 km s−1 and 12 km s−1 imply the presence of two dense molecular clouds toward W49A. The brighter 12 km s−1 cloud peaks 35″ southeast of W49A IRS, the infrared and H2O/OH maser sources associated with the compact H II region, while the 4 km s−1 cloud has a peak at W49A IRS. The hydrogen column density through the c34S emitting region is (0.3-1.7) x 1024 cm−2. The estimated core mass of the W49A molecular cloud is (0.5-2.5) x 104 M⊙. This mass is closely packed in a small region of 3.4 pc in diameter, and is about an order of magnitude larger than the virial mass of the system. The massive core will collapse within 10 years unless there is some special supporting mechanism. There was a sudden increase in the star formation rate 104– 105 years ago, suggesting a triggered burst of star formation in the core of W49A. The collision of two velocity clouds might have triggered the formation of this massive core and the burst of star formation.


Sign in / Sign up

Export Citation Format

Share Document